Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hélein, Frédéric 1963- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Basel Birkhäuser Basel 2001
Schriftenreihe:Lectures in Mathematics. ETH Zürich
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042422099
003 DE-604
005 20160405
007 cr|uuu---uuuuu
008 150317s2001 xx o|||| 00||| eng d
020 |a 9783034883306  |c Online  |9 978-3-0348-8330-6 
020 |a 9783764365769  |c Print  |9 978-3-7643-6576-9 
024 7 |a 10.1007/978-3-0348-8330-6  |2 doi 
035 |a (OCoLC)863718382 
035 |a (DE-599)BVBBV042422099 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 510  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Hélein, Frédéric  |d 1963-  |e Verfasser  |0 (DE-588)172705681  |4 aut 
245 1 0 |a Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems  |c by Frédéric Hélein 
264 1 |a Basel  |b Birkhäuser Basel  |c 2001 
300 |a 1 Online-Ressource (122p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Lectures in Mathematics. ETH Zürich 
500 |a One of the most striking development of the last decades in the study of minimal surfaces, constant mean surfaces and harmonic maps is the discovery that many classical problems in differential geometry - including these examples - are actually integrable systems. This theory grew up mainly after the important discovery of the properties of the Korteweg-de Vries equation in the sixties. After C. Gardner, J. Greene, M. Kruskal et R. Miura [44] showed that this equation could be solved using the inverse scattering method and P. Lax [62] reinterpreted this method by his famous equation, many other deep observations have been made during the seventies, mainly by the Russian and the Japanese schools. In particular this theory was shown to be strongly connected with methods from algebraic geom­ etry (S. Novikov, V. B. Matveev, LM. Krichever. . . ), loop techniques (M. Adler, B. Kostant, W. W. Symes, M. J. Ablowitz . . . ) and Grassmannian manifolds in Hilbert spaces (M. Sato . . . ). Approximatively during the same period, the twist or theory of R. Penrose, built independentely, was applied successfully by R. Penrose and R. S. Ward for constructing self-dual Yang-Mills connections and four-dimensional self-dual manifolds using complex geometry methods. Then in the eighties it became clear that all these methods share the same roots and that other instances of integrable systems should exist, in particular in differential ge­ ometry. This led K. 
650 4 |a Mathematics 
650 4 |a Mathematics, general 
650 4 |a Mathematik 
650 0 7 |a Integrables System  |0 (DE-588)4114032-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Harmonische Abbildung  |0 (DE-588)4023452-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Fläche  |0 (DE-588)4129864-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Konstante mittlere Krümmung  |0 (DE-588)4235957-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Fläche  |0 (DE-588)4129864-0  |D s 
689 0 1 |a Konstante mittlere Krümmung  |0 (DE-588)4235957-0  |D s 
689 0 2 |a Harmonische Abbildung  |0 (DE-588)4023452-6  |D s 
689 0 3 |a Integrables System  |0 (DE-588)4114032-1  |D s 
689 0 |8 1\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-3-0348-8330-6  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027857516 

Datensatz im Suchindex

DE-BY-TUM_katkey 2069108
_version_ 1820806325402075136
any_adam_object
author Hélein, Frédéric 1963-
author_GND (DE-588)172705681
author_facet Hélein, Frédéric 1963-
author_role aut
author_sort Hélein, Frédéric 1963-
author_variant f h fh
building Verbundindex
bvnumber BV042422099
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)863718382
(DE-599)BVBBV042422099
dewey-full 510
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
dewey-raw 510
dewey-search 510
dewey-sort 3510
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-0348-8330-6
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03395nam a2200529zc 4500</leader><controlfield tag="001">BV042422099</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160405 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034883306</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8330-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764365769</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-6576-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8330-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863718382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422099</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hélein, Frédéric</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172705681</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems</subfield><subfield code="c">by Frédéric Hélein</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (122p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lectures in Mathematics. ETH Zürich</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">One of the most striking development of the last decades in the study of minimal surfaces, constant mean surfaces and harmonic maps is the discovery that many classical problems in differential geometry - including these examples - are actually integrable systems. This theory grew up mainly after the important discovery of the properties of the Korteweg-de Vries equation in the sixties. After C. Gardner, J. Greene, M. Kruskal et R. Miura [44] showed that this equation could be solved using the inverse scattering method and P. Lax [62] reinterpreted this method by his famous equation, many other deep observations have been made during the seventies, mainly by the Russian and the Japanese schools. In particular this theory was shown to be strongly connected with methods from algebraic geom­ etry (S. Novikov, V. B. Matveev, LM. Krichever. . . ), loop techniques (M. Adler, B. Kostant, W. W. Symes, M. J. Ablowitz . . . ) and Grassmannian manifolds in Hilbert spaces (M. Sato . . . ). Approximatively during the same period, the twist or theory of R. Penrose, built independentely, was applied successfully by R. Penrose and R. S. Ward for constructing self-dual Yang-Mills connections and four-dimensional self-dual manifolds using complex geometry methods. Then in the eighties it became clear that all these methods share the same roots and that other instances of integrable systems should exist, in particular in differential ge­ ometry. This led K.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Abbildung</subfield><subfield code="0">(DE-588)4023452-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fläche</subfield><subfield code="0">(DE-588)4129864-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konstante mittlere Krümmung</subfield><subfield code="0">(DE-588)4235957-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fläche</subfield><subfield code="0">(DE-588)4129864-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konstante mittlere Krümmung</subfield><subfield code="0">(DE-588)4235957-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Harmonische Abbildung</subfield><subfield code="0">(DE-588)4023452-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8330-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857516</subfield></datafield></record></collection>
id DE-604.BV042422099
illustrated Not Illustrated
indexdate 2024-12-24T04:23:24Z
institution BVB
isbn 9783034883306
9783764365769
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027857516
oclc_num 863718382
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (122p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher Birkhäuser Basel
record_format marc
series2 Lectures in Mathematics. ETH Zürich
spellingShingle Hélein, Frédéric 1963-
Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems
Mathematics
Mathematics, general
Mathematik
Integrables System (DE-588)4114032-1 gnd
Harmonische Abbildung (DE-588)4023452-6 gnd
Fläche (DE-588)4129864-0 gnd
Konstante mittlere Krümmung (DE-588)4235957-0 gnd
subject_GND (DE-588)4114032-1
(DE-588)4023452-6
(DE-588)4129864-0
(DE-588)4235957-0
title Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems
title_auth Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems
title_exact_search Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems
title_full Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems by Frédéric Hélein
title_fullStr Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems by Frédéric Hélein
title_full_unstemmed Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems by Frédéric Hélein
title_short Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems
title_sort constant mean curvature surfaces harmonic maps and integrable systems
topic Mathematics
Mathematics, general
Mathematik
Integrables System (DE-588)4114032-1 gnd
Harmonische Abbildung (DE-588)4023452-6 gnd
Fläche (DE-588)4129864-0 gnd
Konstante mittlere Krümmung (DE-588)4235957-0 gnd
topic_facet Mathematics
Mathematics, general
Mathematik
Integrables System
Harmonische Abbildung
Fläche
Konstante mittlere Krümmung
url https://doi.org/10.1007/978-3-0348-8330-6
work_keys_str_mv AT heleinfrederic constantmeancurvaturesurfacesharmonicmapsandintegrablesystems