Complex Convexity and Analytic Functionals

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Andersson, Mats (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Basel Birkhäuser Basel 2004
Schriftenreihe:Progress in Mathematics 225
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV042421973
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s2004 |||| o||u| ||||||eng d
020 |a 9783034878715  |c Online  |9 978-3-0348-7871-5 
020 |a 9783034896054  |c Print  |9 978-3-0348-9605-4 
024 7 |a 10.1007/978-3-0348-7871-5  |2 doi 
035 |a (OCoLC)879624619 
035 |a (DE-599)BVBBV042421973 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 515.7  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Andersson, Mats  |e Verfasser  |4 aut 
245 1 0 |a Complex Convexity and Analytic Functionals  |c by Mats Andersson, Ragnar Sigurdsson, Mikael Passare 
264 1 |a Basel  |b Birkhäuser Basel  |c 2004 
300 |a 1 Online-Ressource (XI, 164 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Progress in Mathematics  |v 225 
500 |a A set in complex Euclidean space is called C-convex if all its intersections with complex lines are contractible, and it is said to be linearly convex if its complement is a union of complex hyperplanes. These notions are intermediates between ordinary geometric convexity and pseudoconvexity. Their importance was first manifested in the pioneering work of André Martineau from about forty years ago. Since then a large number of new related results have been obtained by many different mathematicians. The present book puts the modern theory of complex linear convexity on a solid footing, and gives a thorough and up-to-date survey of its current status. Applications include the Fantappié transformation of analytic functionals, integral representation formulas, polynomial interpolation, and solutions to linear partial differential equations 
650 4 |a Mathematics 
650 4 |a Functional analysis 
650 4 |a Functions of complex variables 
650 4 |a Differential equations, partial 
650 4 |a Discrete groups 
650 4 |a Functional Analysis 
650 4 |a Functions of a Complex Variable 
650 4 |a Partial Differential Equations 
650 4 |a Convex and Discrete Geometry 
650 4 |a Mathematik 
650 0 7 |a Analytische Funktion  |0 (DE-588)4142348-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Konvexität  |0 (DE-588)4114284-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Komplexer projektiver Raum  |0 (DE-588)4164906-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Konvexe Menge  |0 (DE-588)4165212-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Komplexe Variable  |0 (DE-588)4164905-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Funktional  |0 (DE-588)4155667-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Komplexer projektiver Raum  |0 (DE-588)4164906-0  |D s 
689 0 1 |a Konvexe Menge  |0 (DE-588)4165212-5  |D s 
689 0 2 |a Funktional  |0 (DE-588)4155667-7  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Analytische Funktion  |0 (DE-588)4142348-3  |D s 
689 1 1 |a Konvexität  |0 (DE-588)4114284-6  |D s 
689 1 2 |a Komplexe Variable  |0 (DE-588)4164905-9  |D s 
689 1 |8 2\p  |5 DE-604 
700 1 |a Sigurdsson, Ragnar  |e Sonstige  |4 oth 
700 1 |a Passare, Mikael  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-3-0348-7871-5  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA  |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
999 |a oai:aleph.bib-bvb.de:BVB01-027857390 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_katkey 2068982
_version_ 1816714049603239936
any_adam_object
author Andersson, Mats
author_facet Andersson, Mats
author_role aut
author_sort Andersson, Mats
author_variant m a ma
building Verbundindex
bvnumber BV042421973
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)879624619
(DE-599)BVBBV042421973
dewey-full 515.7
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.7
dewey-search 515.7
dewey-sort 3515.7
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-0348-7871-5
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03476nmm a2200697zcb4500</leader><controlfield tag="001">BV042421973</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034878715</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7871-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034896054</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9605-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7871-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624619</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421973</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andersson, Mats</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex Convexity and Analytic Functionals</subfield><subfield code="c">by Mats Andersson, Ragnar Sigurdsson, Mikael Passare</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 164 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">225</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A set in complex Euclidean space is called C-convex if all its intersections with complex lines are contractible, and it is said to be linearly convex if its complement is a union of complex hyperplanes. These notions are intermediates between ordinary geometric convexity and pseudoconvexity. Their importance was first manifested in the pioneering work of André Martineau from about forty years ago. Since then a large number of new related results have been obtained by many different mathematicians. The present book puts the modern theory of complex linear convexity on a solid footing, and gives a thorough and up-to-date survey of its current status. Applications include the Fantappié transformation of analytic functionals, integral representation formulas, polynomial interpolation, and solutions to linear partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of a Complex Variable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex and Discrete Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Funktion</subfield><subfield code="0">(DE-588)4142348-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexität</subfield><subfield code="0">(DE-588)4114284-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexer projektiver Raum</subfield><subfield code="0">(DE-588)4164906-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Menge</subfield><subfield code="0">(DE-588)4165212-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Variable</subfield><subfield code="0">(DE-588)4164905-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktional</subfield><subfield code="0">(DE-588)4155667-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Komplexer projektiver Raum</subfield><subfield code="0">(DE-588)4164906-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konvexe Menge</subfield><subfield code="0">(DE-588)4165212-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Funktional</subfield><subfield code="0">(DE-588)4155667-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Analytische Funktion</subfield><subfield code="0">(DE-588)4142348-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Konvexität</subfield><subfield code="0">(DE-588)4114284-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Komplexe Variable</subfield><subfield code="0">(DE-588)4164905-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sigurdsson, Ragnar</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Passare, Mikael</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7871-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857390</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV042421973
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9783034878715
9783034896054
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027857390
oclc_num 879624619
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XI, 164 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 2004
publishDateSearch 2004
publishDateSort 2004
publisher Birkhäuser Basel
record_format marc
series2 Progress in Mathematics
spellingShingle Andersson, Mats
Complex Convexity and Analytic Functionals
Mathematics
Functional analysis
Functions of complex variables
Differential equations, partial
Discrete groups
Functional Analysis
Functions of a Complex Variable
Partial Differential Equations
Convex and Discrete Geometry
Mathematik
Analytische Funktion (DE-588)4142348-3 gnd
Konvexität (DE-588)4114284-6 gnd
Komplexer projektiver Raum (DE-588)4164906-0 gnd
Konvexe Menge (DE-588)4165212-5 gnd
Komplexe Variable (DE-588)4164905-9 gnd
Funktional (DE-588)4155667-7 gnd
subject_GND (DE-588)4142348-3
(DE-588)4114284-6
(DE-588)4164906-0
(DE-588)4165212-5
(DE-588)4164905-9
(DE-588)4155667-7
title Complex Convexity and Analytic Functionals
title_auth Complex Convexity and Analytic Functionals
title_exact_search Complex Convexity and Analytic Functionals
title_full Complex Convexity and Analytic Functionals by Mats Andersson, Ragnar Sigurdsson, Mikael Passare
title_fullStr Complex Convexity and Analytic Functionals by Mats Andersson, Ragnar Sigurdsson, Mikael Passare
title_full_unstemmed Complex Convexity and Analytic Functionals by Mats Andersson, Ragnar Sigurdsson, Mikael Passare
title_short Complex Convexity and Analytic Functionals
title_sort complex convexity and analytic functionals
topic Mathematics
Functional analysis
Functions of complex variables
Differential equations, partial
Discrete groups
Functional Analysis
Functions of a Complex Variable
Partial Differential Equations
Convex and Discrete Geometry
Mathematik
Analytische Funktion (DE-588)4142348-3 gnd
Konvexität (DE-588)4114284-6 gnd
Komplexer projektiver Raum (DE-588)4164906-0 gnd
Konvexe Menge (DE-588)4165212-5 gnd
Komplexe Variable (DE-588)4164905-9 gnd
Funktional (DE-588)4155667-7 gnd
topic_facet Mathematics
Functional analysis
Functions of complex variables
Differential equations, partial
Discrete groups
Functional Analysis
Functions of a Complex Variable
Partial Differential Equations
Convex and Discrete Geometry
Mathematik
Analytische Funktion
Konvexität
Komplexer projektiver Raum
Konvexe Menge
Komplexe Variable
Funktional
url https://doi.org/10.1007/978-3-0348-7871-5
work_keys_str_mv AT anderssonmats complexconvexityandanalyticfunctionals
AT sigurdssonragnar complexconvexityandanalyticfunctionals
AT passaremikael complexconvexityandanalyticfunctionals