Introduction to Complex Analytic Geometry

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Łojasiewicz, Stanisław (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Basel Birkhäuser Basel 1991
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042421948
003 DE-604
005 20171214
007 cr|uuu---uuuuu
008 150317s1991 xx o|||| 00||| eng d
020 |a 9783034876179  |c Online  |9 978-3-0348-7617-9 
020 |a 9783034876193  |c Print  |9 978-3-0348-7619-3 
024 7 |a 10.1007/978-3-0348-7617-9  |2 doi 
035 |a (OCoLC)879622293 
035 |a (DE-599)BVBBV042421948 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 515  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Łojasiewicz, Stanisław  |e Verfasser  |4 aut 
245 1 0 |a Introduction to Complex Analytic Geometry  |c by Stanisław Łojasiewicz 
264 1 |a Basel  |b Birkhäuser Basel  |c 1991 
300 |a 1 Online-Ressource (XIV, 523 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a facts. An elementary acquaintance with topology, algebra, and analysis (including the notion of a manifold) is sufficient as far as the understanding of this book is concerned. All the necessary properties and theorems have been gathered in the preliminary chapters -either with proofs or with references to standard and elementary textbooks. The first chapter of the book is devoted to a study of the rings Oa of holomorphic functions. The notions of analytic sets and germs are introduced in the second chapter. Its aim is to present elementary properties of these objects, also in connection with ideals of the rings Oa. The case of principal germs (§5) and one-dimensional germs (Puiseux theorem, §6) are treated separately. The main step towards understanding of the local structure of analytic sets is Ruckert's descriptive lemma proved in Chapter III. Among its consequences is the important Hilbert Nullstellensatz (§4). In the fourth chapter, a study of local structure (normal triples, § 1) is followed by an exposition of the basic properties of analytic sets. The latter includes theorems on the set of singular points, irreducibility, and decomposition into irreducible branches (§2). The role played by the ring O A of an analytic germ is shown (§4). Then, the Remmert-Stein theorem on removable singularities is proved (§6). The last part of the chapter deals with analytically constructible sets (§7) 
650 4 |a Mathematics 
650 4 |a Geometry, algebraic 
650 4 |a Global analysis (Mathematics) 
650 4 |a Analysis 
650 4 |a Algebraic Geometry 
650 4 |a Mathematik 
650 0 7 |a Analytische Geometrie  |0 (DE-588)4001867-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Komplexe analytische Geometrie  |0 (DE-588)4280577-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Komplexe analytische Geometrie  |0 (DE-588)4280577-6  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Analytische Geometrie  |0 (DE-588)4001867-2  |D s 
689 1 |8 2\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-3-0348-7617-9  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027857365 

Datensatz im Suchindex

DE-BY-TUM_katkey 2068957
_version_ 1820806317954039808
any_adam_object
author Łojasiewicz, Stanisław
author_facet Łojasiewicz, Stanisław
author_role aut
author_sort Łojasiewicz, Stanisław
author_variant s ł sł
building Verbundindex
bvnumber BV042421948
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)879622293
(DE-599)BVBBV042421948
dewey-full 515
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515
dewey-search 515
dewey-sort 3515
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-0348-7617-9
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03256nam a2200529zc 4500</leader><controlfield tag="001">BV042421948</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1991 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034876179</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-7617-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034876193</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-7619-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-7617-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879622293</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421948</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Łojasiewicz, Stanisław</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Complex Analytic Geometry</subfield><subfield code="c">by Stanisław Łojasiewicz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 523 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">facts. An elementary acquaintance with topology, algebra, and analysis (including the notion of a manifold) is sufficient as far as the understanding of this book is concerned. All the necessary properties and theorems have been gathered in the preliminary chapters -either with proofs or with references to standard and elementary textbooks. The first chapter of the book is devoted to a study of the rings Oa of holomorphic functions. The notions of analytic sets and germs are introduced in the second chapter. Its aim is to present elementary properties of these objects, also in connection with ideals of the rings Oa. The case of principal germs (§5) and one-dimensional germs (Puiseux theorem, §6) are treated separately. The main step towards understanding of the local structure of analytic sets is Ruckert's descriptive lemma proved in Chapter III. Among its consequences is the important Hilbert Nullstellensatz (§4). In the fourth chapter, a study of local structure (normal triples, § 1) is followed by an exposition of the basic properties of analytic sets. The latter includes theorems on the set of singular points, irreducibility, and decomposition into irreducible branches (§2). The role played by the ring O A of an analytic germ is shown (§4). Then, the Remmert-Stein theorem on removable singularities is proved (§6). The last part of the chapter deals with analytically constructible sets (§7)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe analytische Geometrie</subfield><subfield code="0">(DE-588)4280577-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Komplexe analytische Geometrie</subfield><subfield code="0">(DE-588)4280577-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-7617-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857365</subfield></datafield></record></collection>
id DE-604.BV042421948
illustrated Not Illustrated
indexdate 2024-12-24T04:23:24Z
institution BVB
isbn 9783034876179
9783034876193
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027857365
oclc_num 879622293
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XIV, 523 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1991
publishDateSearch 1991
publishDateSort 1991
publisher Birkhäuser Basel
record_format marc
spellingShingle Łojasiewicz, Stanisław
Introduction to Complex Analytic Geometry
Mathematics
Geometry, algebraic
Global analysis (Mathematics)
Analysis
Algebraic Geometry
Mathematik
Analytische Geometrie (DE-588)4001867-2 gnd
Komplexe analytische Geometrie (DE-588)4280577-6 gnd
subject_GND (DE-588)4001867-2
(DE-588)4280577-6
title Introduction to Complex Analytic Geometry
title_auth Introduction to Complex Analytic Geometry
title_exact_search Introduction to Complex Analytic Geometry
title_full Introduction to Complex Analytic Geometry by Stanisław Łojasiewicz
title_fullStr Introduction to Complex Analytic Geometry by Stanisław Łojasiewicz
title_full_unstemmed Introduction to Complex Analytic Geometry by Stanisław Łojasiewicz
title_short Introduction to Complex Analytic Geometry
title_sort introduction to complex analytic geometry
topic Mathematics
Geometry, algebraic
Global analysis (Mathematics)
Analysis
Algebraic Geometry
Mathematik
Analytische Geometrie (DE-588)4001867-2 gnd
Komplexe analytische Geometrie (DE-588)4280577-6 gnd
topic_facet Mathematics
Geometry, algebraic
Global analysis (Mathematics)
Analysis
Algebraic Geometry
Mathematik
Analytische Geometrie
Komplexe analytische Geometrie
url https://doi.org/10.1007/978-3-0348-7617-9
work_keys_str_mv AT łojasiewiczstanisław introductiontocomplexanalyticgeometry