Characterizations of Inner Product Spaces

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Amir, Dan (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Basel Birkhäuser Basel 1986
Schriftenreihe:Operator Theory: Advances and Applications 20
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042421870
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1986 xx o|||| 00||| eng d
020 |a 9783034854870  |c Online  |9 978-3-0348-5487-0 
020 |a 9783034854894  |c Print  |9 978-3-0348-5489-4 
024 7 |a 10.1007/978-3-0348-5487-0  |2 doi 
035 |a (OCoLC)858022771 
035 |a (DE-599)BVBBV042421870 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 50  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Amir, Dan  |e Verfasser  |4 aut 
245 1 0 |a Characterizations of Inner Product Spaces  |c by Dan Amir 
264 1 |a Basel  |b Birkhäuser Basel  |c 1986 
300 |a 1 Online-Ressource (VII, 200 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Operator Theory: Advances and Applications  |v 20  |x 0255-0156 
500 |a Every mathematician working in Banaeh spaee geometry or Approximation theory knows, from his own experienee, that most "natural" geometrie properties may faH to hold in a generalnormed spaee unless the spaee is an inner produet spaee. To reeall the weIl known definitions, this means IIx 11 = *, where is an inner (or: scalar) product on E, Le. a function from ExE to the underlying (real or eomplex) field satisfying: (i) O for x ~ o. (ii) is linear in x. (iii) = (intherealease,thisisjust 
650 4 |a Science (General) 
650 4 |a Science, general 
650 4 |a Naturwissenschaft 
650 0 7 |a Charakterisierung  |0 (DE-588)4069926-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Hilbert-Raum  |0 (DE-588)4159850-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Vektorraum  |0 (DE-588)4130622-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Banach-Raum  |0 (DE-588)4004402-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Innenproduktraum  |0 (DE-588)4130366-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Skalarprodukt  |0 (DE-588)4181619-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Hilbert-Raum  |0 (DE-588)4159850-7  |D s 
689 0 1 |a Banach-Raum  |0 (DE-588)4004402-6  |D s 
689 0 2 |a Skalarprodukt  |0 (DE-588)4181619-5  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Hilbert-Raum  |0 (DE-588)4159850-7  |D s 
689 1 1 |a Charakterisierung  |0 (DE-588)4069926-2  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Innenproduktraum  |0 (DE-588)4130366-0  |D s 
689 2 1 |a Charakterisierung  |0 (DE-588)4069926-2  |D s 
689 2 |8 3\p  |5 DE-604 
689 3 0 |a Vektorraum  |0 (DE-588)4130622-3  |D s 
689 3 1 |a Skalarprodukt  |0 (DE-588)4181619-5  |D s 
689 3 |8 4\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-3-0348-5487-0  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 4\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027857287 

Datensatz im Suchindex

DE-BY-TUM_katkey 2068879
_version_ 1820806312521367552
any_adam_object
author Amir, Dan
author_facet Amir, Dan
author_role aut
author_sort Amir, Dan
author_variant d a da
building Verbundindex
bvnumber BV042421870
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)858022771
(DE-599)BVBBV042421870
dewey-full 50
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 050 - General serial publications
dewey-raw 50
dewey-search 50
dewey-sort 250
dewey-tens 050 - General serial publications
discipline Allgemeine Naturwissenschaft
Mathematik
doi_str_mv 10.1007/978-3-0348-5487-0
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03072nam a2200685zcb4500</leader><controlfield tag="001">BV042421870</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1986 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034854870</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-5487-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034854894</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-5489-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-5487-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)858022771</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421870</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">50</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Amir, Dan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterizations of Inner Product Spaces</subfield><subfield code="c">by Dan Amir</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 200 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Operator Theory: Advances and Applications</subfield><subfield code="v">20</subfield><subfield code="x">0255-0156</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Every mathematician working in Banaeh spaee geometry or Approximation theory knows, from his own experienee, that most "natural" geometrie properties may faH to hold in a generalnormed spaee unless the spaee is an inner produet spaee. To reeall the weIl known definitions, this means IIx 11 = *, where is an inner (or: scalar) product on E, Le. a function from ExE to the underlying (real or eomplex) field satisfying: (i) O for x ~ o. (ii) is linear in x. (iii) = (intherealease,thisisjust</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Charakterisierung</subfield><subfield code="0">(DE-588)4069926-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorraum</subfield><subfield code="0">(DE-588)4130622-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Innenproduktraum</subfield><subfield code="0">(DE-588)4130366-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Skalarprodukt</subfield><subfield code="0">(DE-588)4181619-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Skalarprodukt</subfield><subfield code="0">(DE-588)4181619-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Charakterisierung</subfield><subfield code="0">(DE-588)4069926-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Innenproduktraum</subfield><subfield code="0">(DE-588)4130366-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Charakterisierung</subfield><subfield code="0">(DE-588)4069926-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Vektorraum</subfield><subfield code="0">(DE-588)4130622-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Skalarprodukt</subfield><subfield code="0">(DE-588)4181619-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-5487-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857287</subfield></datafield></record></collection>
id DE-604.BV042421870
illustrated Not Illustrated
indexdate 2024-12-24T04:23:24Z
institution BVB
isbn 9783034854870
9783034854894
issn 0255-0156
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027857287
oclc_num 858022771
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (VII, 200 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1986
publishDateSearch 1986
publishDateSort 1986
publisher Birkhäuser Basel
record_format marc
series2 Operator Theory: Advances and Applications
spellingShingle Amir, Dan
Characterizations of Inner Product Spaces
Science (General)
Science, general
Naturwissenschaft
Charakterisierung (DE-588)4069926-2 gnd
Hilbert-Raum (DE-588)4159850-7 gnd
Vektorraum (DE-588)4130622-3 gnd
Banach-Raum (DE-588)4004402-6 gnd
Innenproduktraum (DE-588)4130366-0 gnd
Skalarprodukt (DE-588)4181619-5 gnd
subject_GND (DE-588)4069926-2
(DE-588)4159850-7
(DE-588)4130622-3
(DE-588)4004402-6
(DE-588)4130366-0
(DE-588)4181619-5
title Characterizations of Inner Product Spaces
title_auth Characterizations of Inner Product Spaces
title_exact_search Characterizations of Inner Product Spaces
title_full Characterizations of Inner Product Spaces by Dan Amir
title_fullStr Characterizations of Inner Product Spaces by Dan Amir
title_full_unstemmed Characterizations of Inner Product Spaces by Dan Amir
title_short Characterizations of Inner Product Spaces
title_sort characterizations of inner product spaces
topic Science (General)
Science, general
Naturwissenschaft
Charakterisierung (DE-588)4069926-2 gnd
Hilbert-Raum (DE-588)4159850-7 gnd
Vektorraum (DE-588)4130622-3 gnd
Banach-Raum (DE-588)4004402-6 gnd
Innenproduktraum (DE-588)4130366-0 gnd
Skalarprodukt (DE-588)4181619-5 gnd
topic_facet Science (General)
Science, general
Naturwissenschaft
Charakterisierung
Hilbert-Raum
Vektorraum
Banach-Raum
Innenproduktraum
Skalarprodukt
url https://doi.org/10.1007/978-3-0348-5487-0
work_keys_str_mv AT amirdan characterizationsofinnerproductspaces