Non-vanishing of L-Functions and Applications

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Murty, M. Ram (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Basel Springer Basel 1997
Schriftenreihe:Modern Birkhäuser Classics
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042421842
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1997 xx o|||| 00||| eng d
020 |a 9783034802741  |c Online  |9 978-3-0348-0274-1 
020 |a 9783034802734  |c Print  |9 978-3-0348-0273-4 
024 7 |a 10.1007/978-3-0348-0274-1  |2 doi 
035 |a (OCoLC)863858455 
035 |a (DE-599)BVBBV042421842 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 512.7  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Murty, M. Ram  |e Verfasser  |4 aut 
245 1 0 |a Non-vanishing of L-Functions and Applications  |c by M. Ram Murty, V. Kumar Murty 
264 1 |a Basel  |b Springer Basel  |c 1997 
300 |a 1 Online-Ressource (XI, 196p. 1 illus) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Modern Birkhäuser Classics 
500 |a This book systematically develops some methods for proving the non-vanishing of certain L-functions at points in the critical strip. Researchers in number theory, graduate students who wish to enter into the area and non-specialists who wish to acquire an introduction to the subject will benefit by a study of this book. One of the most attractive features of the monograph is that it begins at a very basic level and quickly develops enough aspects of the theory to bring the reader to a point where the latest discoveries as are presented in the final chapters can be fully appreciated. --------- This book has been awarded the Ferran Sunyer I Balaguer 1996 prize (…)The deepest results are contained in Chapter 6 on quadratic twists of modular L-functions with connections to the Birch-Swinnerton-Dyer conjecture. (…) [It] is well-suited and stimulating for the graduate level because there is a wealth of recent results and open problems, and also a number of exercices and references after each chapter. (Zentralblatt MATH)   Each chapter is accompanied by exercices, and there is a fair amount of introductory material, general discussion and recommended reading. (…) it will be a useful addition to the library of any serious worker in this area. (Mathematical Reviews)   (…) well written monograph, intended not only for researchers and graduate students specializing in number theory, but also for non-specialists desiring to acquire an introduction to this difficult but very attractive and beautiful domain of investigation. (Mathematica) 
650 4 |a Mathematics 
650 4 |a Geometry, algebraic 
650 4 |a Number theory 
650 4 |a Number Theory 
650 4 |a Algebraic Geometry 
650 4 |a Mathematik 
650 0 7 |a L-Funktion  |0 (DE-588)4137026-0  |2 gnd  |9 rswk-swf 
689 0 0 |a L-Funktion  |0 (DE-588)4137026-0  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Murty, V. Kumar  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-3-0348-0274-1  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027857259 

Datensatz im Suchindex

DE-BY-TUM_katkey 2068851
_version_ 1820806310036242432
any_adam_object
author Murty, M. Ram
author_facet Murty, M. Ram
author_role aut
author_sort Murty, M. Ram
author_variant m r m mr mrm
building Verbundindex
bvnumber BV042421842
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)863858455
(DE-599)BVBBV042421842
dewey-full 512.7
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.7
dewey-search 512.7
dewey-sort 3512.7
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-0348-0274-1
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03190nam a2200505zc 4500</leader><controlfield tag="001">BV042421842</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034802741</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-0274-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034802734</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-0273-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-0274-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863858455</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421842</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Murty, M. Ram</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-vanishing of L-Functions and Applications</subfield><subfield code="c">by M. Ram Murty, V. Kumar Murty</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Springer Basel</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 196p. 1 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Modern Birkhäuser Classics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book systematically develops some methods for proving the non-vanishing of certain L-functions at points in the critical strip. Researchers in number theory, graduate students who wish to enter into the area and non-specialists who wish to acquire an introduction to the subject will benefit by a study of this book. One of the most attractive features of the monograph is that it begins at a very basic level and quickly develops enough aspects of the theory to bring the reader to a point where the latest discoveries as are presented in the final chapters can be fully appreciated. --------- This book has been awarded the Ferran Sunyer I Balaguer 1996 prize (…)The deepest results are contained in Chapter 6 on quadratic twists of modular L-functions with connections to the Birch-Swinnerton-Dyer conjecture. (…) [It] is well-suited and stimulating for the graduate level because there is a wealth of recent results and open problems, and also a number of exercices and references after each chapter. (Zentralblatt MATH)   Each chapter is accompanied by exercices, and there is a fair amount of introductory material, general discussion and recommended reading. (…) it will be a useful addition to the library of any serious worker in this area. (Mathematical Reviews)   (…) well written monograph, intended not only for researchers and graduate students specializing in number theory, but also for non-specialists desiring to acquire an introduction to this difficult but very attractive and beautiful domain of investigation. (Mathematica)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">L-Funktion</subfield><subfield code="0">(DE-588)4137026-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">L-Funktion</subfield><subfield code="0">(DE-588)4137026-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murty, V. Kumar</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-0274-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857259</subfield></datafield></record></collection>
id DE-604.BV042421842
illustrated Not Illustrated
indexdate 2024-12-24T04:23:24Z
institution BVB
isbn 9783034802741
9783034802734
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027857259
oclc_num 863858455
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XI, 196p. 1 illus)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1997
publishDateSearch 1997
publishDateSort 1997
publisher Springer Basel
record_format marc
series2 Modern Birkhäuser Classics
spellingShingle Murty, M. Ram
Non-vanishing of L-Functions and Applications
Mathematics
Geometry, algebraic
Number theory
Number Theory
Algebraic Geometry
Mathematik
L-Funktion (DE-588)4137026-0 gnd
subject_GND (DE-588)4137026-0
title Non-vanishing of L-Functions and Applications
title_auth Non-vanishing of L-Functions and Applications
title_exact_search Non-vanishing of L-Functions and Applications
title_full Non-vanishing of L-Functions and Applications by M. Ram Murty, V. Kumar Murty
title_fullStr Non-vanishing of L-Functions and Applications by M. Ram Murty, V. Kumar Murty
title_full_unstemmed Non-vanishing of L-Functions and Applications by M. Ram Murty, V. Kumar Murty
title_short Non-vanishing of L-Functions and Applications
title_sort non vanishing of l functions and applications
topic Mathematics
Geometry, algebraic
Number theory
Number Theory
Algebraic Geometry
Mathematik
L-Funktion (DE-588)4137026-0 gnd
topic_facet Mathematics
Geometry, algebraic
Number theory
Number Theory
Algebraic Geometry
Mathematik
L-Funktion
url https://doi.org/10.1007/978-3-0348-0274-1
work_keys_str_mv AT murtymram nonvanishingoflfunctionsandapplications
AT murtyvkumar nonvanishingoflfunctionsandapplications