Non-vanishing of L-Functions and Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Springer Basel
1997
|
Schriftenreihe: | Modern Birkhäuser Classics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421842 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 xx o|||| 00||| eng d | ||
020 | |a 9783034802741 |c Online |9 978-3-0348-0274-1 | ||
020 | |a 9783034802734 |c Print |9 978-3-0348-0273-4 | ||
024 | 7 | |a 10.1007/978-3-0348-0274-1 |2 doi | |
035 | |a (OCoLC)863858455 | ||
035 | |a (DE-599)BVBBV042421842 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Murty, M. Ram |e Verfasser |4 aut | |
245 | 1 | 0 | |a Non-vanishing of L-Functions and Applications |c by M. Ram Murty, V. Kumar Murty |
264 | 1 | |a Basel |b Springer Basel |c 1997 | |
300 | |a 1 Online-Ressource (XI, 196p. 1 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Modern Birkhäuser Classics | |
500 | |a This book systematically develops some methods for proving the non-vanishing of certain L-functions at points in the critical strip. Researchers in number theory, graduate students who wish to enter into the area and non-specialists who wish to acquire an introduction to the subject will benefit by a study of this book. One of the most attractive features of the monograph is that it begins at a very basic level and quickly develops enough aspects of the theory to bring the reader to a point where the latest discoveries as are presented in the final chapters can be fully appreciated. --------- This book has been awarded the Ferran Sunyer I Balaguer 1996 prize (…)The deepest results are contained in Chapter 6 on quadratic twists of modular L-functions with connections to the Birch-Swinnerton-Dyer conjecture. (…) [It] is well-suited and stimulating for the graduate level because there is a wealth of recent results and open problems, and also a number of exercices and references after each chapter. (Zentralblatt MATH) Each chapter is accompanied by exercices, and there is a fair amount of introductory material, general discussion and recommended reading. (…) it will be a useful addition to the library of any serious worker in this area. (Mathematical Reviews) (…) well written monograph, intended not only for researchers and graduate students specializing in number theory, but also for non-specialists desiring to acquire an introduction to this difficult but very attractive and beautiful domain of investigation. (Mathematica) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a L-Funktion |0 (DE-588)4137026-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a L-Funktion |0 (DE-588)4137026-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Murty, V. Kumar |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-0274-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027857259 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2068851 |
---|---|
_version_ | 1820806310036242432 |
any_adam_object | |
author | Murty, M. Ram |
author_facet | Murty, M. Ram |
author_role | aut |
author_sort | Murty, M. Ram |
author_variant | m r m mr mrm |
building | Verbundindex |
bvnumber | BV042421842 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863858455 (DE-599)BVBBV042421842 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-0274-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03190nam a2200505zc 4500</leader><controlfield tag="001">BV042421842</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034802741</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-0274-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034802734</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-0273-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-0274-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863858455</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421842</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Murty, M. Ram</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-vanishing of L-Functions and Applications</subfield><subfield code="c">by M. Ram Murty, V. Kumar Murty</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Springer Basel</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 196p. 1 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Modern Birkhäuser Classics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book systematically develops some methods for proving the non-vanishing of certain L-functions at points in the critical strip. Researchers in number theory, graduate students who wish to enter into the area and non-specialists who wish to acquire an introduction to the subject will benefit by a study of this book. One of the most attractive features of the monograph is that it begins at a very basic level and quickly develops enough aspects of the theory to bring the reader to a point where the latest discoveries as are presented in the final chapters can be fully appreciated. --------- This book has been awarded the Ferran Sunyer I Balaguer 1996 prize (…)The deepest results are contained in Chapter 6 on quadratic twists of modular L-functions with connections to the Birch-Swinnerton-Dyer conjecture. (…) [It] is well-suited and stimulating for the graduate level because there is a wealth of recent results and open problems, and also a number of exercices and references after each chapter. (Zentralblatt MATH) Each chapter is accompanied by exercices, and there is a fair amount of introductory material, general discussion and recommended reading. (…) it will be a useful addition to the library of any serious worker in this area. (Mathematical Reviews) (…) well written monograph, intended not only for researchers and graduate students specializing in number theory, but also for non-specialists desiring to acquire an introduction to this difficult but very attractive and beautiful domain of investigation. (Mathematica)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">L-Funktion</subfield><subfield code="0">(DE-588)4137026-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">L-Funktion</subfield><subfield code="0">(DE-588)4137026-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murty, V. Kumar</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-0274-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857259</subfield></datafield></record></collection> |
id | DE-604.BV042421842 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T04:23:24Z |
institution | BVB |
isbn | 9783034802741 9783034802734 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857259 |
oclc_num | 863858455 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 196p. 1 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer Basel |
record_format | marc |
series2 | Modern Birkhäuser Classics |
spellingShingle | Murty, M. Ram Non-vanishing of L-Functions and Applications Mathematics Geometry, algebraic Number theory Number Theory Algebraic Geometry Mathematik L-Funktion (DE-588)4137026-0 gnd |
subject_GND | (DE-588)4137026-0 |
title | Non-vanishing of L-Functions and Applications |
title_auth | Non-vanishing of L-Functions and Applications |
title_exact_search | Non-vanishing of L-Functions and Applications |
title_full | Non-vanishing of L-Functions and Applications by M. Ram Murty, V. Kumar Murty |
title_fullStr | Non-vanishing of L-Functions and Applications by M. Ram Murty, V. Kumar Murty |
title_full_unstemmed | Non-vanishing of L-Functions and Applications by M. Ram Murty, V. Kumar Murty |
title_short | Non-vanishing of L-Functions and Applications |
title_sort | non vanishing of l functions and applications |
topic | Mathematics Geometry, algebraic Number theory Number Theory Algebraic Geometry Mathematik L-Funktion (DE-588)4137026-0 gnd |
topic_facet | Mathematics Geometry, algebraic Number theory Number Theory Algebraic Geometry Mathematik L-Funktion |
url | https://doi.org/10.1007/978-3-0348-0274-1 |
work_keys_str_mv | AT murtymram nonvanishingoflfunctionsandapplications AT murtyvkumar nonvanishingoflfunctionsandapplications |