Integration - A Functional Approach

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bichteler, Klaus (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Basel Springer Basel 1998
Schriftenreihe:Modern Birkhäuser Classics
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042421833
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1998 xx o|||| 00||| eng d
020 |a 9783034800556  |c Online  |9 978-3-0348-0055-6 
020 |a 9783034800549  |c Print  |9 978-3-0348-0054-9 
024 7 |a 10.1007/978-3-0348-0055-6  |2 doi 
035 |a (OCoLC)724768941 
035 |a (DE-599)BVBBV042421833 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 515.7  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Bichteler, Klaus  |e Verfasser  |4 aut 
245 1 0 |a Integration - A Functional Approach  |c by Klaus Bichteler 
264 1 |a Basel  |b Springer Basel  |c 1998 
300 |a 1 Online-Ressource (VIII, 197 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Modern Birkhäuser Classics 
500 |a This book covers Lebesgue integration and its generalizations from Daniell's point of view, modified by the use of seminorms. Integrating functions rather than measuring sets is posited as the main purpose of measure theory. From this point of view Lebesgue's integral can be had as a rather straightforward, even simplistic, extension of Riemann's integral; and its aims, definitions, and procedures can be motivated at an elementary level. The notion of measurability, for example, is suggested by Littlewood's observations rather than being conveyed authoritatively through definitions of (sigma)-algebras and good-cut-conditions, the latter of which are hard to justify and thus appear mysterious, even nettlesome, to the beginner. The approach taken provides the additional benefit of cutting the labor in half. The use of seminorms, ubiquitous in modern analysis, speeds things up even further. The book is intended for the reader who has some experience with proofs, a beginning graduate student for example. It might even be useful to the advanced mathematician who is confronted with situations - such as stochastic integration - where the set-measuring approach to integration does not work. ------  Reviews This book provides a complete and rapid introduction to Lebesgue integration and its generalizations from Daniell’s point of view, (…) The development is clear and it contains interesting historical notes and motivations, abundant exercises and many supplements. The connection with the historical development of integration theory is also pointed out. - Zentralblatt MATH The material is well motivated and the writing is pleasantly informal. (…) There are numerous exercises, many destined to be used later in the text, and 15 pages of solutions/hints. - Mathematical Reviews 
650 4 |a Mathematics 
650 4 |a Functional analysis 
650 4 |a Functional Analysis 
650 4 |a Mathematik 
650 0 7 |a Riemannsches Integral  |0 (DE-588)4049996-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Maßtheorie  |0 (DE-588)4074626-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Integrationstheorie  |0 (DE-588)4138369-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Integration  |g Mathematik  |0 (DE-588)4072852-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Lebesgue-Integral  |0 (DE-588)4034949-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Maßtheorie  |0 (DE-588)4074626-4  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Integration  |g Mathematik  |0 (DE-588)4072852-3  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Integrationstheorie  |0 (DE-588)4138369-2  |D s 
689 2 |8 3\p  |5 DE-604 
689 3 0 |a Riemannsches Integral  |0 (DE-588)4049996-0  |D s 
689 3 |8 4\p  |5 DE-604 
689 4 0 |a Lebesgue-Integral  |0 (DE-588)4034949-4  |D s 
689 4 |8 5\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-3-0348-0055-6  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 4\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 5\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027857250 

Datensatz im Suchindex

DE-BY-TUM_katkey 2068842
_version_ 1820806310149488640
any_adam_object
author Bichteler, Klaus
author_facet Bichteler, Klaus
author_role aut
author_sort Bichteler, Klaus
author_variant k b kb
building Verbundindex
bvnumber BV042421833
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)724768941
(DE-599)BVBBV042421833
dewey-full 515.7
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.7
dewey-search 515.7
dewey-sort 3515.7
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-0348-0055-6
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04278nam a2200661zc 4500</leader><controlfield tag="001">BV042421833</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034800556</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-0055-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034800549</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-0054-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-0055-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)724768941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421833</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bichteler, Klaus</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integration - A Functional Approach</subfield><subfield code="c">by Klaus Bichteler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Springer Basel</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 197 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Modern Birkhäuser Classics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book covers Lebesgue integration and its generalizations from Daniell's point of view, modified by the use of seminorms. Integrating functions rather than measuring sets is posited as the main purpose of measure theory. From this point of view Lebesgue's integral can be had as a rather straightforward, even simplistic, extension of Riemann's integral; and its aims, definitions, and procedures can be motivated at an elementary level. The notion of measurability, for example, is suggested by Littlewood's observations rather than being conveyed authoritatively through definitions of (sigma)-algebras and good-cut-conditions, the latter of which are hard to justify and thus appear mysterious, even nettlesome, to the beginner. The approach taken provides the additional benefit of cutting the labor in half. The use of seminorms, ubiquitous in modern analysis, speeds things up even further. The book is intended for the reader who has some experience with proofs, a beginning graduate student for example. It might even be useful to the advanced mathematician who is confronted with situations - such as stochastic integration - where the set-measuring approach to integration does not work. ------  Reviews This book provides a complete and rapid introduction to Lebesgue integration and its generalizations from Daniell’s point of view, (…) The development is clear and it contains interesting historical notes and motivations, abundant exercises and many supplements. The connection with the historical development of integration theory is also pointed out. - Zentralblatt MATH The material is well motivated and the writing is pleasantly informal. (…) There are numerous exercises, many destined to be used later in the text, and 15 pages of solutions/hints. - Mathematical Reviews</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsches Integral</subfield><subfield code="0">(DE-588)4049996-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrationstheorie</subfield><subfield code="0">(DE-588)4138369-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integration</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4072852-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lebesgue-Integral</subfield><subfield code="0">(DE-588)4034949-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Integration</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4072852-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Integrationstheorie</subfield><subfield code="0">(DE-588)4138369-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Riemannsches Integral</subfield><subfield code="0">(DE-588)4049996-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Lebesgue-Integral</subfield><subfield code="0">(DE-588)4034949-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-0055-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857250</subfield></datafield></record></collection>
id DE-604.BV042421833
illustrated Not Illustrated
indexdate 2024-12-24T04:23:24Z
institution BVB
isbn 9783034800556
9783034800549
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027857250
oclc_num 724768941
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (VIII, 197 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher Springer Basel
record_format marc
series2 Modern Birkhäuser Classics
spellingShingle Bichteler, Klaus
Integration - A Functional Approach
Mathematics
Functional analysis
Functional Analysis
Mathematik
Riemannsches Integral (DE-588)4049996-0 gnd
Maßtheorie (DE-588)4074626-4 gnd
Integrationstheorie (DE-588)4138369-2 gnd
Integration Mathematik (DE-588)4072852-3 gnd
Lebesgue-Integral (DE-588)4034949-4 gnd
subject_GND (DE-588)4049996-0
(DE-588)4074626-4
(DE-588)4138369-2
(DE-588)4072852-3
(DE-588)4034949-4
title Integration - A Functional Approach
title_auth Integration - A Functional Approach
title_exact_search Integration - A Functional Approach
title_full Integration - A Functional Approach by Klaus Bichteler
title_fullStr Integration - A Functional Approach by Klaus Bichteler
title_full_unstemmed Integration - A Functional Approach by Klaus Bichteler
title_short Integration - A Functional Approach
title_sort integration a functional approach
topic Mathematics
Functional analysis
Functional Analysis
Mathematik
Riemannsches Integral (DE-588)4049996-0 gnd
Maßtheorie (DE-588)4074626-4 gnd
Integrationstheorie (DE-588)4138369-2 gnd
Integration Mathematik (DE-588)4072852-3 gnd
Lebesgue-Integral (DE-588)4034949-4 gnd
topic_facet Mathematics
Functional analysis
Functional Analysis
Mathematik
Riemannsches Integral
Maßtheorie
Integrationstheorie
Integration Mathematik
Lebesgue-Integral
url https://doi.org/10.1007/978-3-0348-0055-6
work_keys_str_mv AT bichtelerklaus integrationafunctionalapproach