Markov Processes for Stochastic Modeling

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kijima, Masaaki (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Springer US 1997
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042421775
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1997 xx o|||| 00||| eng d
020 |a 9781489931320  |c Online  |9 978-1-4899-3132-0 
020 |a 9780412606601  |c Print  |9 978-0-412-60660-1 
024 7 |a 10.1007/978-1-4899-3132-0  |2 doi 
035 |a (OCoLC)1048256824 
035 |a (DE-599)BVBBV042421775 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 510  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Kijima, Masaaki  |e Verfasser  |4 aut 
245 1 0 |a Markov Processes for Stochastic Modeling  |c by Masaaki Kijima 
264 1 |a Boston, MA  |b Springer US  |c 1997 
300 |a 1 Online-Ressource (X, 341 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a This book presents an algebraic development of the theory of countable state space Markov chains with discrete- and continuous-time parameters. A Markov chain is a stochastic process characterized by the Markov prop­ erty that the distribution of future depends only on the current state, not on the whole history. Despite its simple form of dependency, the Markov property has enabled us to develop a rich system of concepts and theorems and to derive many results that are useful in applications. In fact, the areas that can be modeled, with varying degrees of success, by Markov chains are vast and are still expanding. The aim of this book is a discussion of the time-dependent behavior, called the transient behavior, of Markov chains. From the practical point of view, when modeling a stochastic system by a Markov chain, there are many instances in which time-limiting results such as stationary distributions have no meaning. Or, even when the stationary distribution is of some importance, it is often dangerous to use the stationary result alone without knowing the transient behavior of the Markov chain. Not many books have paid much attention to this topic, despite its obvious importance 
650 4 |a Mathematics 
650 4 |a Computer science 
650 4 |a Mathematics, general 
650 4 |a Models and Principles 
650 4 |a Informatik 
650 4 |a Mathematik 
650 0 7 |a Stochastisches Modell  |0 (DE-588)4057633-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Markov-Prozess  |0 (DE-588)4134948-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Markov-Prozess  |0 (DE-588)4134948-9  |D s 
689 0 1 |a Stochastisches Modell  |0 (DE-588)4057633-4  |D s 
689 0 |8 1\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-1-4899-3132-0  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027857192 

Datensatz im Suchindex

DE-BY-TUM_katkey 2068784
_version_ 1820806309929287680
any_adam_object
author Kijima, Masaaki
author_facet Kijima, Masaaki
author_role aut
author_sort Kijima, Masaaki
author_variant m k mk
building Verbundindex
bvnumber BV042421775
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1048256824
(DE-599)BVBBV042421775
dewey-full 510
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
dewey-raw 510
dewey-search 510
dewey-sort 3510
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-1-4899-3132-0
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02860nam a2200505zc 4500</leader><controlfield tag="001">BV042421775</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781489931320</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4899-3132-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780412606601</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-412-60660-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4899-3132-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1048256824</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421775</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kijima, Masaaki</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Markov Processes for Stochastic Modeling</subfield><subfield code="c">by Masaaki Kijima</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 341 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents an algebraic development of the theory of countable state space Markov chains with discrete- and continuous-time parameters. A Markov chain is a stochastic process characterized by the Markov prop­ erty that the distribution of future depends only on the current state, not on the whole history. Despite its simple form of dependency, the Markov property has enabled us to develop a rich system of concepts and theorems and to derive many results that are useful in applications. In fact, the areas that can be modeled, with varying degrees of success, by Markov chains are vast and are still expanding. The aim of this book is a discussion of the time-dependent behavior, called the transient behavior, of Markov chains. From the practical point of view, when modeling a stochastic system by a Markov chain, there are many instances in which time-limiting results such as stationary distributions have no meaning. Or, even when the stationary distribution is of some importance, it is often dangerous to use the stationary result alone without knowing the transient behavior of the Markov chain. Not many books have paid much attention to this topic, despite its obvious importance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Models and Principles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4899-3132-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857192</subfield></datafield></record></collection>
id DE-604.BV042421775
illustrated Not Illustrated
indexdate 2024-12-24T04:23:24Z
institution BVB
isbn 9781489931320
9780412606601
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027857192
oclc_num 1048256824
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (X, 341 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1997
publishDateSearch 1997
publishDateSort 1997
publisher Springer US
record_format marc
spellingShingle Kijima, Masaaki
Markov Processes for Stochastic Modeling
Mathematics
Computer science
Mathematics, general
Models and Principles
Informatik
Mathematik
Stochastisches Modell (DE-588)4057633-4 gnd
Markov-Prozess (DE-588)4134948-9 gnd
subject_GND (DE-588)4057633-4
(DE-588)4134948-9
title Markov Processes for Stochastic Modeling
title_auth Markov Processes for Stochastic Modeling
title_exact_search Markov Processes for Stochastic Modeling
title_full Markov Processes for Stochastic Modeling by Masaaki Kijima
title_fullStr Markov Processes for Stochastic Modeling by Masaaki Kijima
title_full_unstemmed Markov Processes for Stochastic Modeling by Masaaki Kijima
title_short Markov Processes for Stochastic Modeling
title_sort markov processes for stochastic modeling
topic Mathematics
Computer science
Mathematics, general
Models and Principles
Informatik
Mathematik
Stochastisches Modell (DE-588)4057633-4 gnd
Markov-Prozess (DE-588)4134948-9 gnd
topic_facet Mathematics
Computer science
Mathematics, general
Models and Principles
Informatik
Mathematik
Stochastisches Modell
Markov-Prozess
url https://doi.org/10.1007/978-1-4899-3132-0
work_keys_str_mv AT kijimamasaaki markovprocessesforstochasticmodeling