Introduction to Numerical Analysis

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Stoer, J. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: New York, NY Springer New York 1980
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042421667
003 DE-604
005 20180115
007 cr|uuu---uuuuu
008 150317s1980 xx o|||| 00||| eng d
020 |a 9781475755923  |c Online  |9 978-1-4757-5592-3 
020 |a 9781475755947  |c Print  |9 978-1-4757-5594-7 
024 7 |a 10.1007/978-1-4757-5592-3  |2 doi 
035 |a (OCoLC)1184499508 
035 |a (DE-599)BVBBV042421667 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 518  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Stoer, J.  |e Verfasser  |4 aut 
245 1 0 |a Introduction to Numerical Analysis  |c by J. Stoer, R. Bulirsch 
264 1 |a New York, NY  |b Springer New York  |c 1980 
300 |a 1 Online-Ressource (IX, 609 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a This book is based on a one-year introductory course on numerical analysis given by the authors at several universities in Germany and the United States. The authors concentrate on methods which can be worked out on a digital computer. For important topics, algorithmic descriptions (given more or less formally in ALGOL 60), as well as thorough but concise treatments of their theoretical foundations, are provided. Where several methods for solving a problem are presented, comparisons of their applicability and limitations are offered. Each comparison is based on operation counts, theoretical properties such as convergence rates, and, more importantly, the intrinsic numerical properties that account for the reliability or unreliability of an algorithm. Within this context, the introductory chapter on error analysis plays a special role because it precisely describes basic concepts, such as the numerical stability of algorithms, that are indispensable in the thorough treatment of numerical questions. The remaining seven chapters are devoted to describing numerical methods in various contexts. In addition to covering standard topics, these chapters encompass some special subjects not usually found in introductions to numerical analysis. Chapter 2, which discusses interpolation, gives an account of modern fast Fourier transform methods. In Chapter 3, extrapolation techniques for speeding up the convergence of discretization methods in connection with Romberg integration are explained at length 
650 4 |a Mathematics 
650 4 |a Numerical analysis 
650 4 |a Numerical Analysis 
650 4 |a Mathematik 
650 0 7 |a Numerische Mathematik  |0 (DE-588)4042805-9  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Numerische Mathematik  |0 (DE-588)4042805-9  |D s 
689 0 |8 2\p  |5 DE-604 
700 1 |a Bulirsch, R.  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-1-4757-5592-3  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027857084 

Datensatz im Suchindex

DE-BY-TUM_katkey 2068676
_version_ 1820806772859863040
any_adam_object
author Stoer, J.
author_facet Stoer, J.
author_role aut
author_sort Stoer, J.
author_variant j s js
building Verbundindex
bvnumber BV042421667
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1184499508
(DE-599)BVBBV042421667
dewey-full 518
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 518 - Numerical analysis
dewey-raw 518
dewey-search 518
dewey-sort 3518
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-1-4757-5592-3
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03184nam a2200493zc 4500</leader><controlfield tag="001">BV042421667</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180115 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1980 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475755923</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-5592-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475755947</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-5594-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-5592-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184499508</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421667</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stoer, J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Numerical Analysis</subfield><subfield code="c">by J. Stoer, R. Bulirsch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1980</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 609 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is based on a one-year introductory course on numerical analysis given by the authors at several universities in Germany and the United States. The authors concentrate on methods which can be worked out on a digital computer. For important topics, algorithmic descriptions (given more or less formally in ALGOL 60), as well as thorough but concise treatments of their theoretical foundations, are provided. Where several methods for solving a problem are presented, comparisons of their applicability and limitations are offered. Each comparison is based on operation counts, theoretical properties such as convergence rates, and, more importantly, the intrinsic numerical properties that account for the reliability or unreliability of an algorithm. Within this context, the introductory chapter on error analysis plays a special role because it precisely describes basic concepts, such as the numerical stability of algorithms, that are indispensable in the thorough treatment of numerical questions. The remaining seven chapters are devoted to describing numerical methods in various contexts. In addition to covering standard topics, these chapters encompass some special subjects not usually found in introductions to numerical analysis. Chapter 2, which discusses interpolation, gives an account of modern fast Fourier transform methods. In Chapter 3, extrapolation techniques for speeding up the convergence of discretization methods in connection with Romberg integration are explained at length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bulirsch, R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-5592-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857084</subfield></datafield></record></collection>
genre 1\p (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV042421667
illustrated Not Illustrated
indexdate 2024-12-24T04:23:24Z
institution BVB
isbn 9781475755923
9781475755947
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027857084
oclc_num 1184499508
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (IX, 609 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1980
publishDateSearch 1980
publishDateSort 1980
publisher Springer New York
record_format marc
spellingShingle Stoer, J.
Introduction to Numerical Analysis
Mathematics
Numerical analysis
Numerical Analysis
Mathematik
Numerische Mathematik (DE-588)4042805-9 gnd
subject_GND (DE-588)4042805-9
(DE-588)4123623-3
title Introduction to Numerical Analysis
title_auth Introduction to Numerical Analysis
title_exact_search Introduction to Numerical Analysis
title_full Introduction to Numerical Analysis by J. Stoer, R. Bulirsch
title_fullStr Introduction to Numerical Analysis by J. Stoer, R. Bulirsch
title_full_unstemmed Introduction to Numerical Analysis by J. Stoer, R. Bulirsch
title_short Introduction to Numerical Analysis
title_sort introduction to numerical analysis
topic Mathematics
Numerical analysis
Numerical Analysis
Mathematik
Numerische Mathematik (DE-588)4042805-9 gnd
topic_facet Mathematics
Numerical analysis
Numerical Analysis
Mathematik
Numerische Mathematik
Lehrbuch
url https://doi.org/10.1007/978-1-4757-5592-3
work_keys_str_mv AT stoerj introductiontonumericalanalysis
AT bulirschr introductiontonumericalanalysis