Smoothing Spline ANOVA Models

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gu, Chong (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: New York, NY Springer New York 2002
Schriftenreihe:Springer Series in Statistics
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042421508
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s2002 xx o|||| 00||| eng d
020 |a 9781475736830  |c Online  |9 978-1-4757-3683-0 
020 |a 9781441929662  |c Print  |9 978-1-4419-2966-2 
024 7 |a 10.1007/978-1-4757-3683-0  |2 doi 
035 |a (OCoLC)863891953 
035 |a (DE-599)BVBBV042421508 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 519.5  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Gu, Chong  |e Verfasser  |4 aut 
245 1 0 |a Smoothing Spline ANOVA Models  |c by Chong Gu 
264 1 |a New York, NY  |b Springer New York  |c 2002 
300 |a 1 Online-Ressource (XIII, 290 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Springer Series in Statistics  |x 0172-7397 
500 |a Nonparametric function estimation with stochastic data, otherwise known as smoothing, has been studied by several generations of statisticians. Assisted by the recent availability of ample desktop and laptop computing power, smoothing methods are now finding their ways into everyday data analysis by practitioners. While scores of methods have proved successful for univariate smoothing, ones practical in multivariate settings number far less. Smoothing spline ANOVA models are a versatile family of smoothing methods derived through roughness penalties that are suitable for both univariate and multivariate problems. In this book, the author presents a comprehensive treatment of penalty smoothing under a unified framework. Methods are developed for (i) regression with Gaussian and non-Gaussian responses as well as with censored life time data; (ii) density and conditional density estimation under a variety of sampling schemes; and (iii) hazard rate estimation with censored life time data and covariates. The unifying themes are the general penalized likelihood method and the construction of multivariate models with built-in ANOVA decompositions. Extensive discussions are devoted to model construction, smoothing parameter selection, computation, and asymptotic convergence. Most of the computational and data analytical tools discussed in the book are implemented in R, an open-source clone of the popular S/S- PLUS language. Code for regression has been distributed in the R package gss freely available through the Internet on CRAN, the Comprehensive R Archive Network. The use of gss facilities is illustrated in the book through simulated and real data examples 
650 4 |a Statistics 
650 4 |a Mathematical statistics 
650 4 |a Statistical Theory and Methods 
650 4 |a Statistik 
650 0 7 |a Varianzanalyse  |0 (DE-588)4187413-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Glättung  |0 (DE-588)4157404-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Spline  |0 (DE-588)4182391-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Varianzanalyse  |0 (DE-588)4187413-4  |D s 
689 0 1 |a Spline  |0 (DE-588)4182391-6  |D s 
689 0 2 |a Glättung  |0 (DE-588)4157404-7  |D s 
689 0 |8 1\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-1-4757-3683-0  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027856925 

Datensatz im Suchindex

DE-BY-TUM_katkey 2068517
_version_ 1820806767686189056
any_adam_object
author Gu, Chong
author_facet Gu, Chong
author_role aut
author_sort Gu, Chong
author_variant c g cg
building Verbundindex
bvnumber BV042421508
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)863891953
(DE-599)BVBBV042421508
dewey-full 519.5
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.5
dewey-search 519.5
dewey-sort 3519.5
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-1-4757-3683-0
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03411nam a2200517zc 4500</leader><controlfield tag="001">BV042421508</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475736830</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3683-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441929662</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-2966-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3683-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863891953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421508</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gu, Chong</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Smoothing Spline ANOVA Models</subfield><subfield code="c">by Chong Gu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 290 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Statistics</subfield><subfield code="x">0172-7397</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Nonparametric function estimation with stochastic data, otherwise known as smoothing, has been studied by several generations of statisticians. Assisted by the recent availability of ample desktop and laptop computing power, smoothing methods are now finding their ways into everyday data analysis by practitioners. While scores of methods have proved successful for univariate smoothing, ones practical in multivariate settings number far less. Smoothing spline ANOVA models are a versatile family of smoothing methods derived through roughness penalties that are suitable for both univariate and multivariate problems. In this book, the author presents a comprehensive treatment of penalty smoothing under a unified framework. Methods are developed for (i) regression with Gaussian and non-Gaussian responses as well as with censored life time data; (ii) density and conditional density estimation under a variety of sampling schemes; and (iii) hazard rate estimation with censored life time data and covariates. The unifying themes are the general penalized likelihood method and the construction of multivariate models with built-in ANOVA decompositions. Extensive discussions are devoted to model construction, smoothing parameter selection, computation, and asymptotic convergence. Most of the computational and data analytical tools discussed in the book are implemented in R, an open-source clone of the popular S/S- PLUS language. Code for regression has been distributed in the R package gss freely available through the Internet on CRAN, the Comprehensive R Archive Network. The use of gss facilities is illustrated in the book through simulated and real data examples</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Varianzanalyse</subfield><subfield code="0">(DE-588)4187413-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Glättung</subfield><subfield code="0">(DE-588)4157404-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline</subfield><subfield code="0">(DE-588)4182391-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Varianzanalyse</subfield><subfield code="0">(DE-588)4187413-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spline</subfield><subfield code="0">(DE-588)4182391-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Glättung</subfield><subfield code="0">(DE-588)4157404-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3683-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856925</subfield></datafield></record></collection>
id DE-604.BV042421508
illustrated Not Illustrated
indexdate 2024-12-24T04:23:23Z
institution BVB
isbn 9781475736830
9781441929662
issn 0172-7397
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027856925
oclc_num 863891953
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XIII, 290 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 2002
publishDateSearch 2002
publishDateSort 2002
publisher Springer New York
record_format marc
series2 Springer Series in Statistics
spellingShingle Gu, Chong
Smoothing Spline ANOVA Models
Statistics
Mathematical statistics
Statistical Theory and Methods
Statistik
Varianzanalyse (DE-588)4187413-4 gnd
Glättung (DE-588)4157404-7 gnd
Spline (DE-588)4182391-6 gnd
subject_GND (DE-588)4187413-4
(DE-588)4157404-7
(DE-588)4182391-6
title Smoothing Spline ANOVA Models
title_auth Smoothing Spline ANOVA Models
title_exact_search Smoothing Spline ANOVA Models
title_full Smoothing Spline ANOVA Models by Chong Gu
title_fullStr Smoothing Spline ANOVA Models by Chong Gu
title_full_unstemmed Smoothing Spline ANOVA Models by Chong Gu
title_short Smoothing Spline ANOVA Models
title_sort smoothing spline anova models
topic Statistics
Mathematical statistics
Statistical Theory and Methods
Statistik
Varianzanalyse (DE-588)4187413-4 gnd
Glättung (DE-588)4157404-7 gnd
Spline (DE-588)4182391-6 gnd
topic_facet Statistics
Mathematical statistics
Statistical Theory and Methods
Statistik
Varianzanalyse
Glättung
Spline
url https://doi.org/10.1007/978-1-4757-3683-0
work_keys_str_mv AT guchong smoothingsplineanovamodels