Commutative Semigroups

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Grillet, P. A. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Springer US 2001
Schriftenreihe:Advances in Mathematics 2
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042421461
003 DE-604
005 20170918
007 cr|uuu---uuuuu
008 150317s2001 xx o|||| 00||| eng d
020 |a 9781475733891  |c Online  |9 978-1-4757-3389-1 
020 |a 9781441948571  |c Print  |9 978-1-4419-4857-1 
024 7 |a 10.1007/978-1-4757-3389-1  |2 doi 
035 |a (OCoLC)860112362 
035 |a (DE-599)BVBBV042421461 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 512.2  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Grillet, P. A.  |e Verfasser  |4 aut 
245 1 0 |a Commutative Semigroups  |c by P. A. Grillet 
264 1 |a Boston, MA  |b Springer US  |c 2001 
300 |a 1 Online-Ressource (XIV, 437 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Advances in Mathematics  |v 2 
500 |a The first book on commutative semigroups was Redei's The theory of finitely generated commutative semigroups, published in Budapest in 1956. Subsequent years have brought much progress. By 1975 the structure of finite commutative semigroups was fairly well understood. Recent results have perfected this understanding and extended it to finitely generated semigroups. Today's coherent and powerful structure theory is the central subject of the present book. 1. Commutative semigroups are more important than is suggested by the standard examples of semigroups, which consist of various kinds of transformations or arise from finite automata, and are usually quite noncommutative. Commutative semigroups provide a natural setting and a useful tool for the study of factorization in rings. Additive subsemigroups of N and Nn have close ties to algebraic geometry. Commutative rings are constructed from commutative semigroups as semigroup algebras or power series rings. These areas are all subjects of active research and together account for about half of all current papers on commutative semigroups. Commutative results also invite generalization to larger classes of semigroups. Archimedean decompositions, a comparatively small part of today's arsenal, have been generalized extensively, as shown for instance in the upcoming books by Nagy [2001] and Ciric [2002] 
650 4 |a Mathematics 
650 4 |a Algebra 
650 4 |a Group theory 
650 4 |a Group Theory and Generalizations 
650 4 |a Mathematik 
830 0 |a Advances in Mathematics  |v 2  |w (DE-604)BV025360563  |9 2 
856 4 0 |u https://doi.org/10.1007/978-1-4757-3389-1  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027856878 

Datensatz im Suchindex

DE-BY-TUM_katkey 2068470
_version_ 1820806762922508288
any_adam_object
author Grillet, P. A.
author_facet Grillet, P. A.
author_role aut
author_sort Grillet, P. A.
author_variant p a g pa pag
building Verbundindex
bvnumber BV042421461
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)860112362
(DE-599)BVBBV042421461
dewey-full 512.2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.2
dewey-search 512.2
dewey-sort 3512.2
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-1-4757-3389-1
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02722nam a2200445zcb4500</leader><controlfield tag="001">BV042421461</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170918 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475733891</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3389-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441948571</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-4857-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3389-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)860112362</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421461</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grillet, P. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Commutative Semigroups</subfield><subfield code="c">by P. A. Grillet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 437 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advances in Mathematics</subfield><subfield code="v">2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The first book on commutative semigroups was Redei's The theory of finitely generated commutative semigroups, published in Budapest in 1956. Subsequent years have brought much progress. By 1975 the structure of finite commutative semigroups was fairly well understood. Recent results have perfected this understanding and extended it to finitely generated semigroups. Today's coherent and powerful structure theory is the central subject of the present book. 1. Commutative semigroups are more important than is suggested by the standard examples of semigroups, which consist of various kinds of transformations or arise from finite automata, and are usually quite noncommutative. Commutative semigroups provide a natural setting and a useful tool for the study of factorization in rings. Additive subsemigroups of N and Nn have close ties to algebraic geometry. Commutative rings are constructed from commutative semigroups as semigroup algebras or power series rings. These areas are all subjects of active research and together account for about half of all current papers on commutative semigroups. Commutative results also invite generalization to larger classes of semigroups. Archimedean decompositions, a comparatively small part of today's arsenal, have been generalized extensively, as shown for instance in the upcoming books by Nagy [2001] and Ciric [2002]</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advances in Mathematics</subfield><subfield code="v">2</subfield><subfield code="w">(DE-604)BV025360563</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3389-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856878</subfield></datafield></record></collection>
id DE-604.BV042421461
illustrated Not Illustrated
indexdate 2024-12-24T04:23:23Z
institution BVB
isbn 9781475733891
9781441948571
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027856878
oclc_num 860112362
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XIV, 437 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher Springer US
record_format marc
series Advances in Mathematics
series2 Advances in Mathematics
spellingShingle Grillet, P. A.
Commutative Semigroups
Advances in Mathematics
Mathematics
Algebra
Group theory
Group Theory and Generalizations
Mathematik
title Commutative Semigroups
title_auth Commutative Semigroups
title_exact_search Commutative Semigroups
title_full Commutative Semigroups by P. A. Grillet
title_fullStr Commutative Semigroups by P. A. Grillet
title_full_unstemmed Commutative Semigroups by P. A. Grillet
title_short Commutative Semigroups
title_sort commutative semigroups
topic Mathematics
Algebra
Group theory
Group Theory and Generalizations
Mathematik
topic_facet Mathematics
Algebra
Group theory
Group Theory and Generalizations
Mathematik
url https://doi.org/10.1007/978-1-4757-3389-1
volume_link (DE-604)BV025360563
work_keys_str_mv AT grilletpa commutativesemigroups