A Course in the Theory of Groups

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Robinson, Derek J. S. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: New York, NY Springer US 1993
Schriftenreihe:Graduate Texts in Mathematics 80
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV042421005
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1993 |||| o||u| ||||||eng d
020 |a 9781468401288  |c Online  |9 978-1-4684-0128-8 
020 |a 9780387940922  |c Print  |9 978-0-387-94092-2 
024 7 |a 10.1007/978-1-4684-0128-8  |2 doi 
035 |a (OCoLC)879623896 
035 |a (DE-599)BVBBV042421005 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 510  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Robinson, Derek J. S.  |e Verfasser  |4 aut 
245 1 0 |a A Course in the Theory of Groups  |c by Derek J. S. Robinson 
264 1 |a New York, NY  |b Springer US  |c 1993 
300 |a 1 Online-Ressource (XVII, 481p. 41 illus) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Graduate Texts in Mathematics  |v 80  |x 0072-5285 
500 |a " A group is defined by means of the laws of combinations of its symbols," according to a celebrated dictum of Cayley. And this is probably still as good a one-line explanation as any. The concept of a group is surely one of the central ideas of mathematics. Certainly there are a few branches of that science in which groups are not employed implicitly or explicitly. Nor is the use of groups confined to pure mathematics. Quantum theory, molecular and atomic structure, and crystallography are just a few of the areas of science in which the idea of a group as a measure of symmetry has played an important part. The theory of groups is the oldest branch of modern algebra. Its origins are to be found in the work of Joseph Louis Lagrange (1736-1813), Paulo Ruffini (1765-1822), and Evariste Galois (1811-1832) on the theory of algebraic equations. Their groups consisted of permutations of the variables or of the roots of polynomials, and indeed for much of the nineteenth century all groups were finite permutation groups. Nevertheless many of the fundamental ideas of group theory were introduced by these early workers and their successors, Augustin Louis Cauchy (1789-1857), Ludwig Sylow (1832-1918), Camille Jordan (1838-1922) among others. The concept of an abstract group is clearly recognizable in the work of Arthur Cayley (1821-1895) but it did not really win widespread acceptance until Walther von Dyck (1856-1934) introduced presentations of groups 
650 4 |a Mathematics 
650 4 |a Mathematics, general 
650 4 |a Mathematik 
650 0 7 |a Gruppentheorie  |0 (DE-588)4072157-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Gruppentheorie  |0 (DE-588)4072157-7  |D s 
689 0 |8 1\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-1-4684-0128-8  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA  |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
999 |a oai:aleph.bib-bvb.de:BVB01-027856422 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_katkey 2068014
_version_ 1816714048844070913
any_adam_object
author Robinson, Derek J. S.
author_facet Robinson, Derek J. S.
author_role aut
author_sort Robinson, Derek J. S.
author_variant d j s r djs djsr
building Verbundindex
bvnumber BV042421005
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)879623896
(DE-599)BVBBV042421005
dewey-full 510
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
dewey-raw 510
dewey-search 510
dewey-sort 3510
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-1-4684-0128-8
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02960nmm a2200445zcb4500</leader><controlfield tag="001">BV042421005</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468401288</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-0128-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387940922</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-94092-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-0128-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879623896</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421005</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Robinson, Derek J. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Course in the Theory of Groups</subfield><subfield code="c">by Derek J. S. Robinson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer US</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 481p. 41 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">80</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">" A group is defined by means of the laws of combinations of its symbols," according to a celebrated dictum of Cayley. And this is probably still as good a one-line explanation as any. The concept of a group is surely one of the central ideas of mathematics. Certainly there are a few branches of that science in which groups are not employed implicitly or explicitly. Nor is the use of groups confined to pure mathematics. Quantum theory, molecular and atomic structure, and crystallography are just a few of the areas of science in which the idea of a group as a measure of symmetry has played an important part. The theory of groups is the oldest branch of modern algebra. Its origins are to be found in the work of Joseph Louis Lagrange (1736-1813), Paulo Ruffini (1765-1822), and Evariste Galois (1811-1832) on the theory of algebraic equations. Their groups consisted of permutations of the variables or of the roots of polynomials, and indeed for much of the nineteenth century all groups were finite permutation groups. Nevertheless many of the fundamental ideas of group theory were introduced by these early workers and their successors, Augustin Louis Cauchy (1789-1857), Ludwig Sylow (1832-1918), Camille Jordan (1838-1922) among others. The concept of an abstract group is clearly recognizable in the work of Arthur Cayley (1821-1895) but it did not really win widespread acceptance until Walther von Dyck (1856-1934) introduced presentations of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-0128-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856422</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV042421005
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9781468401288
9780387940922
issn 0072-5285
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027856422
oclc_num 879623896
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XVII, 481p. 41 illus)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1993
publishDateSearch 1993
publishDateSort 1993
publisher Springer US
record_format marc
series2 Graduate Texts in Mathematics
spellingShingle Robinson, Derek J. S.
A Course in the Theory of Groups
Mathematics
Mathematics, general
Mathematik
Gruppentheorie (DE-588)4072157-7 gnd
subject_GND (DE-588)4072157-7
title A Course in the Theory of Groups
title_auth A Course in the Theory of Groups
title_exact_search A Course in the Theory of Groups
title_full A Course in the Theory of Groups by Derek J. S. Robinson
title_fullStr A Course in the Theory of Groups by Derek J. S. Robinson
title_full_unstemmed A Course in the Theory of Groups by Derek J. S. Robinson
title_short A Course in the Theory of Groups
title_sort a course in the theory of groups
topic Mathematics
Mathematics, general
Mathematik
Gruppentheorie (DE-588)4072157-7 gnd
topic_facet Mathematics
Mathematics, general
Mathematik
Gruppentheorie
url https://doi.org/10.1007/978-1-4684-0128-8
work_keys_str_mv AT robinsonderekjs acourseinthetheoryofgroups