Differential Equations with Small Parameters and Relaxation Oscillations

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mishchenko, E. F. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Springer US 1980
Schriftenreihe:Mathematical Concepts and Methods in Science and Engineering 13
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042420969
003 DE-604
005 20171214
007 cr|uuu---uuuuu
008 150317s1980 xx o|||| 00||| eng d
020 |a 9781461590477  |c Online  |9 978-1-4615-9047-7 
020 |a 9781461590491  |c Print  |9 978-1-4615-9049-1 
024 7 |a 10.1007/978-1-4615-9047-7  |2 doi 
035 |a (OCoLC)1184503665 
035 |a (DE-599)BVBBV042420969 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 50  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Mishchenko, E. F.  |e Verfasser  |4 aut 
245 1 0 |a Differential Equations with Small Parameters and Relaxation Oscillations  |c by E. F. Mishchenko, N. Kh. Rozov 
264 1 |a Boston, MA  |b Springer US  |c 1980 
300 |a 1 Online-Ressource (X, 228 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Mathematical Concepts and Methods in Science and Engineering  |v 13 
500 |a A large amount of work has been done on ordinary differential equations with small parameters multiplying derivatives. This book investigates questions related to the asymptotic calculation of relaxation oscillations, which are periodic solutions formed of sections of both slow- and fast-motion parts of phase trajectories. A detailed discussion of solutions of differential equations involving small parameters is given for regions near singular points. The main results examined were obtained by L. S. Pontryagin and the authors. Other works have also been taken into account: A. A. Dorodnitsyn's investigations of Van der Pol's equation, results obtained by N. A. Zheleztsov and L. V. Rodygin concerning relaxation oscillations in electronic devices, and results due to A. N. Tikhonov and A. B. Vasil'eva concerning differential equations with small parameters multiplying certain derivatives. E. F. Mishchenko N. Kh. Rozov v CONTENTS Chapter I. Dependence of Solutions on Small Parameters. Applications of Relaxation Oscillations 1. Smooth Dependence. Poincare's Theorem . 1 2. Dependence of Solutions on a Parameter, on an Infinite Time Interval 3 3. Equations with Small Parameters 4 Multiplying Derivatives 4. Second-Order Systems. Fast and Slow Motion 
650 4 |a Science (General) 
650 4 |a Science, general 
650 4 |a Naturwissenschaft 
650 0 7 |a Gewöhnliche Differentialgleichung  |0 (DE-588)4020929-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Asymptotik  |0 (DE-588)4126634-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Gewöhnliche Differentialgleichung  |0 (DE-588)4020929-5  |D s 
689 0 1 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Gewöhnliche Differentialgleichung  |0 (DE-588)4020929-5  |D s 
689 1 1 |a Asymptotik  |0 (DE-588)4126634-1  |D s 
689 1 |8 2\p  |5 DE-604 
700 1 |a Rozov, N. Kh  |e Sonstige  |4 oth 
830 0 |a Mathematical Concepts and Methods in Science and Engineering  |v 13  |w (DE-604)BV000001144  |9 13 
856 4 0 |u https://doi.org/10.1007/978-1-4615-9047-7  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027856386 

Datensatz im Suchindex

DE-BY-TUM_katkey 2067978
_version_ 1820806744526290944
any_adam_object
author Mishchenko, E. F.
author_facet Mishchenko, E. F.
author_role aut
author_sort Mishchenko, E. F.
author_variant e f m ef efm
building Verbundindex
bvnumber BV042420969
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1184503665
(DE-599)BVBBV042420969
dewey-full 50
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 050 - General serial publications
dewey-raw 50
dewey-search 50
dewey-sort 250
dewey-tens 050 - General serial publications
discipline Allgemeine Naturwissenschaft
Mathematik
doi_str_mv 10.1007/978-1-4615-9047-7
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03446nam a2200565zcb4500</leader><controlfield tag="001">BV042420969</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1980 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461590477</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4615-9047-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461590491</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4615-9049-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-9047-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184503665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420969</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">50</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mishchenko, E. F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential Equations with Small Parameters and Relaxation Oscillations</subfield><subfield code="c">by E. F. Mishchenko, N. Kh. Rozov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1980</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 228 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical Concepts and Methods in Science and Engineering</subfield><subfield code="v">13</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A large amount of work has been done on ordinary differential equations with small parameters multiplying derivatives. This book investigates questions related to the asymptotic calculation of relaxation oscillations, which are periodic solutions formed of sections of both slow- and fast-motion parts of phase trajectories. A detailed discussion of solutions of differential equations involving small parameters is given for regions near singular points. The main results examined were obtained by L. S. Pontryagin and the authors. Other works have also been taken into account: A. A. Dorodnitsyn's investigations of Van der Pol's equation, results obtained by N. A. Zheleztsov and L. V. Rodygin concerning relaxation oscillations in electronic devices, and results due to A. N. Tikhonov and A. B. Vasil'eva concerning differential equations with small parameters multiplying certain derivatives. E. F. Mishchenko N. Kh. Rozov v CONTENTS Chapter I. Dependence of Solutions on Small Parameters. Applications of Relaxation Oscillations 1. Smooth Dependence. Poincare's Theorem . 1 2. Dependence of Solutions on a Parameter, on an Infinite Time Interval 3 3. Equations with Small Parameters 4 Multiplying Derivatives 4. Second-Order Systems. Fast and Slow Motion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rozov, N. Kh</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical Concepts and Methods in Science and Engineering</subfield><subfield code="v">13</subfield><subfield code="w">(DE-604)BV000001144</subfield><subfield code="9">13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-9047-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856386</subfield></datafield></record></collection>
id DE-604.BV042420969
illustrated Not Illustrated
indexdate 2024-12-24T04:23:22Z
institution BVB
isbn 9781461590477
9781461590491
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027856386
oclc_num 1184503665
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (X, 228 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1980
publishDateSearch 1980
publishDateSort 1980
publisher Springer US
record_format marc
series Mathematical Concepts and Methods in Science and Engineering
series2 Mathematical Concepts and Methods in Science and Engineering
spellingShingle Mishchenko, E. F.
Differential Equations with Small Parameters and Relaxation Oscillations
Mathematical Concepts and Methods in Science and Engineering
Science (General)
Science, general
Naturwissenschaft
Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
Asymptotik (DE-588)4126634-1 gnd
subject_GND (DE-588)4020929-5
(DE-588)4128130-5
(DE-588)4126634-1
title Differential Equations with Small Parameters and Relaxation Oscillations
title_auth Differential Equations with Small Parameters and Relaxation Oscillations
title_exact_search Differential Equations with Small Parameters and Relaxation Oscillations
title_full Differential Equations with Small Parameters and Relaxation Oscillations by E. F. Mishchenko, N. Kh. Rozov
title_fullStr Differential Equations with Small Parameters and Relaxation Oscillations by E. F. Mishchenko, N. Kh. Rozov
title_full_unstemmed Differential Equations with Small Parameters and Relaxation Oscillations by E. F. Mishchenko, N. Kh. Rozov
title_short Differential Equations with Small Parameters and Relaxation Oscillations
title_sort differential equations with small parameters and relaxation oscillations
topic Science (General)
Science, general
Naturwissenschaft
Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
Asymptotik (DE-588)4126634-1 gnd
topic_facet Science (General)
Science, general
Naturwissenschaft
Gewöhnliche Differentialgleichung
Numerisches Verfahren
Asymptotik
url https://doi.org/10.1007/978-1-4615-9047-7
volume_link (DE-604)BV000001144
work_keys_str_mv AT mishchenkoef differentialequationswithsmallparametersandrelaxationoscillations
AT rozovnkh differentialequationswithsmallparametersandrelaxationoscillations