Geometric Methods and Optimization Problems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1999
|
Schriftenreihe: | Combinatorial Optimization
4 |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420904 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781461553199 |c Online |9 978-1-4615-5319-9 | ||
020 | |a 9781461374275 |c Print |9 978-1-4613-7427-5 | ||
024 | 7 | |a 10.1007/978-1-4615-5319-9 |2 doi | |
035 | |a (OCoLC)879625170 | ||
035 | |a (DE-599)BVBBV042420904 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Boltyanski, V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric Methods and Optimization Problems |c by V. Boltyanski, H. Martini, V. Soltan |
264 | 1 | |a Boston, MA |b Springer US |c 1999 | |
300 | |a 1 Online-Ressource (VIII, 432 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Combinatorial Optimization |v 4 |x 1388-3011 | |
500 | |a VII Preface In many fields of mathematics, geometry has established itself as a fruitful method and common language for describing basic phenomena and problems as well as suggesting ways of solutions. Especially in pure mathematics this is ob vious and well-known (examples are the much discussed interplay between lin ear algebra and analytical geometry and several problems in multidimensional analysis). On the other hand, many specialists from applied mathematics seem to prefer more formal analytical and numerical methods and representations. Nevertheless, very often the internal development of disciplines from applied mathematics led to geometric models, and occasionally breakthroughs were b~ed on geometric insights. An excellent example is the Klee-Minty cube, solving a problem of linear programming by transforming it into a geomet ric problem. Also the development of convex programming in recent decades demonstrated the power of methods that evolved within the field of convex geometry. The present book focuses on three applied disciplines: control theory, location science and computational geometry. It is our aim to demonstrate how methods and topics from convex geometry in a wider sense (separation theory of convex cones, Minkowski geometry, convex partitionings, etc.) can help to solve various problems from these disciplines | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Electronic data processing | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Discrete groups | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Optimization | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Convex and Discrete Geometry | |
650 | 4 | |a Numeric Computing | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Geometrische Methode |0 (DE-588)4156715-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | 1 | |a Geometrische Methode |0 (DE-588)4156715-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Martini, H. |e Sonstige |4 oth | |
700 | 1 | |a Soltan, V. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-5319-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856321 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2067913 |
---|---|
_version_ | 1816714048640647168 |
any_adam_object | |
author | Boltyanski, V. |
author_facet | Boltyanski, V. |
author_role | aut |
author_sort | Boltyanski, V. |
author_variant | v b vb |
building | Verbundindex |
bvnumber | BV042420904 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879625170 (DE-599)BVBBV042420904 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4615-5319-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03389nmm a2200589zcb4500</leader><controlfield tag="001">BV042420904</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461553199</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4615-5319-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461374275</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-7427-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-5319-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879625170</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420904</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boltyanski, V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric Methods and Optimization Problems</subfield><subfield code="c">by V. Boltyanski, H. Martini, V. Soltan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 432 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Combinatorial Optimization</subfield><subfield code="v">4</subfield><subfield code="x">1388-3011</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">VII Preface In many fields of mathematics, geometry has established itself as a fruitful method and common language for describing basic phenomena and problems as well as suggesting ways of solutions. Especially in pure mathematics this is ob vious and well-known (examples are the much discussed interplay between lin ear algebra and analytical geometry and several problems in multidimensional analysis). On the other hand, many specialists from applied mathematics seem to prefer more formal analytical and numerical methods and representations. Nevertheless, very often the internal development of disciplines from applied mathematics led to geometric models, and occasionally breakthroughs were b~ed on geometric insights. An excellent example is the Klee-Minty cube, solving a problem of linear programming by transforming it into a geomet ric problem. Also the development of convex programming in recent decades demonstrated the power of methods that evolved within the field of convex geometry. The present book focuses on three applied disciplines: control theory, location science and computational geometry. It is our aim to demonstrate how methods and topics from convex geometry in a wider sense (separation theory of convex cones, Minkowski geometry, convex partitionings, etc.) can help to solve various problems from these disciplines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex and Discrete Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numeric Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Methode</subfield><subfield code="0">(DE-588)4156715-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrische Methode</subfield><subfield code="0">(DE-588)4156715-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martini, H.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Soltan, V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-5319-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856321</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420904 |
illustrated | Not Illustrated |
indexdate | 2024-11-25T17:51:13Z |
institution | BVB |
isbn | 9781461553199 9781461374275 |
issn | 1388-3011 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856321 |
oclc_num | 879625170 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 432 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer US |
record_format | marc |
series2 | Combinatorial Optimization |
spellingShingle | Boltyanski, V. Geometric Methods and Optimization Problems Mathematics Electronic data processing Combinatorics Discrete groups Mathematical optimization Optimization Calculus of Variations and Optimal Control; Optimization Convex and Discrete Geometry Numeric Computing Datenverarbeitung Mathematik Geometrische Methode (DE-588)4156715-8 gnd Optimierung (DE-588)4043664-0 gnd |
subject_GND | (DE-588)4156715-8 (DE-588)4043664-0 |
title | Geometric Methods and Optimization Problems |
title_auth | Geometric Methods and Optimization Problems |
title_exact_search | Geometric Methods and Optimization Problems |
title_full | Geometric Methods and Optimization Problems by V. Boltyanski, H. Martini, V. Soltan |
title_fullStr | Geometric Methods and Optimization Problems by V. Boltyanski, H. Martini, V. Soltan |
title_full_unstemmed | Geometric Methods and Optimization Problems by V. Boltyanski, H. Martini, V. Soltan |
title_short | Geometric Methods and Optimization Problems |
title_sort | geometric methods and optimization problems |
topic | Mathematics Electronic data processing Combinatorics Discrete groups Mathematical optimization Optimization Calculus of Variations and Optimal Control; Optimization Convex and Discrete Geometry Numeric Computing Datenverarbeitung Mathematik Geometrische Methode (DE-588)4156715-8 gnd Optimierung (DE-588)4043664-0 gnd |
topic_facet | Mathematics Electronic data processing Combinatorics Discrete groups Mathematical optimization Optimization Calculus of Variations and Optimal Control; Optimization Convex and Discrete Geometry Numeric Computing Datenverarbeitung Mathematik Geometrische Methode Optimierung |
url | https://doi.org/10.1007/978-1-4615-5319-9 |
work_keys_str_mv | AT boltyanskiv geometricmethodsandoptimizationproblems AT martinih geometricmethodsandoptimizationproblems AT soltanv geometricmethodsandoptimizationproblems |