Geometric Methods and Optimization Problems

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Boltyanski, V. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Springer US 1999
Schriftenreihe:Combinatorial Optimization 4
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV042420904
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1999 |||| o||u| ||||||eng d
020 |a 9781461553199  |c Online  |9 978-1-4615-5319-9 
020 |a 9781461374275  |c Print  |9 978-1-4613-7427-5 
024 7 |a 10.1007/978-1-4615-5319-9  |2 doi 
035 |a (OCoLC)879625170 
035 |a (DE-599)BVBBV042420904 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 519.6  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Boltyanski, V.  |e Verfasser  |4 aut 
245 1 0 |a Geometric Methods and Optimization Problems  |c by V. Boltyanski, H. Martini, V. Soltan 
264 1 |a Boston, MA  |b Springer US  |c 1999 
300 |a 1 Online-Ressource (VIII, 432 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Combinatorial Optimization  |v 4  |x 1388-3011 
500 |a VII Preface In many fields of mathematics, geometry has established itself as a fruitful method and common language for describing basic phenomena and problems as well as suggesting ways of solutions. Especially in pure mathematics this is ob­ vious and well-known (examples are the much discussed interplay between lin­ ear algebra and analytical geometry and several problems in multidimensional analysis). On the other hand, many specialists from applied mathematics seem to prefer more formal analytical and numerical methods and representations. Nevertheless, very often the internal development of disciplines from applied mathematics led to geometric models, and occasionally breakthroughs were b~ed on geometric insights. An excellent example is the Klee-Minty cube, solving a problem of linear programming by transforming it into a geomet­ ric problem. Also the development of convex programming in recent decades demonstrated the power of methods that evolved within the field of convex geometry. The present book focuses on three applied disciplines: control theory, location science and computational geometry. It is our aim to demonstrate how methods and topics from convex geometry in a wider sense (separation theory of convex cones, Minkowski geometry, convex partitionings, etc.) can help to solve various problems from these disciplines 
650 4 |a Mathematics 
650 4 |a Electronic data processing 
650 4 |a Combinatorics 
650 4 |a Discrete groups 
650 4 |a Mathematical optimization 
650 4 |a Optimization 
650 4 |a Calculus of Variations and Optimal Control; Optimization 
650 4 |a Convex and Discrete Geometry 
650 4 |a Numeric Computing 
650 4 |a Datenverarbeitung 
650 4 |a Mathematik 
650 0 7 |a Geometrische Methode  |0 (DE-588)4156715-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Optimierung  |0 (DE-588)4043664-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Optimierung  |0 (DE-588)4043664-0  |D s 
689 0 1 |a Geometrische Methode  |0 (DE-588)4156715-8  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Martini, H.  |e Sonstige  |4 oth 
700 1 |a Soltan, V.  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-1-4615-5319-9  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA  |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
999 |a oai:aleph.bib-bvb.de:BVB01-027856321 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_katkey 2067913
_version_ 1816714048640647168
any_adam_object
author Boltyanski, V.
author_facet Boltyanski, V.
author_role aut
author_sort Boltyanski, V.
author_variant v b vb
building Verbundindex
bvnumber BV042420904
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)879625170
(DE-599)BVBBV042420904
dewey-full 519.6
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.6
dewey-search 519.6
dewey-sort 3519.6
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-1-4615-5319-9
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03389nmm a2200589zcb4500</leader><controlfield tag="001">BV042420904</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461553199</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4615-5319-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461374275</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-7427-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-5319-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879625170</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420904</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boltyanski, V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric Methods and Optimization Problems</subfield><subfield code="c">by V. Boltyanski, H. Martini, V. Soltan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 432 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Combinatorial Optimization</subfield><subfield code="v">4</subfield><subfield code="x">1388-3011</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">VII Preface In many fields of mathematics, geometry has established itself as a fruitful method and common language for describing basic phenomena and problems as well as suggesting ways of solutions. Especially in pure mathematics this is ob­ vious and well-known (examples are the much discussed interplay between lin­ ear algebra and analytical geometry and several problems in multidimensional analysis). On the other hand, many specialists from applied mathematics seem to prefer more formal analytical and numerical methods and representations. Nevertheless, very often the internal development of disciplines from applied mathematics led to geometric models, and occasionally breakthroughs were b~ed on geometric insights. An excellent example is the Klee-Minty cube, solving a problem of linear programming by transforming it into a geomet­ ric problem. Also the development of convex programming in recent decades demonstrated the power of methods that evolved within the field of convex geometry. The present book focuses on three applied disciplines: control theory, location science and computational geometry. It is our aim to demonstrate how methods and topics from convex geometry in a wider sense (separation theory of convex cones, Minkowski geometry, convex partitionings, etc.) can help to solve various problems from these disciplines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex and Discrete Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numeric Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Methode</subfield><subfield code="0">(DE-588)4156715-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrische Methode</subfield><subfield code="0">(DE-588)4156715-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martini, H.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Soltan, V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-5319-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856321</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV042420904
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9781461553199
9781461374275
issn 1388-3011
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027856321
oclc_num 879625170
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (VIII, 432 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1999
publishDateSearch 1999
publishDateSort 1999
publisher Springer US
record_format marc
series2 Combinatorial Optimization
spellingShingle Boltyanski, V.
Geometric Methods and Optimization Problems
Mathematics
Electronic data processing
Combinatorics
Discrete groups
Mathematical optimization
Optimization
Calculus of Variations and Optimal Control; Optimization
Convex and Discrete Geometry
Numeric Computing
Datenverarbeitung
Mathematik
Geometrische Methode (DE-588)4156715-8 gnd
Optimierung (DE-588)4043664-0 gnd
subject_GND (DE-588)4156715-8
(DE-588)4043664-0
title Geometric Methods and Optimization Problems
title_auth Geometric Methods and Optimization Problems
title_exact_search Geometric Methods and Optimization Problems
title_full Geometric Methods and Optimization Problems by V. Boltyanski, H. Martini, V. Soltan
title_fullStr Geometric Methods and Optimization Problems by V. Boltyanski, H. Martini, V. Soltan
title_full_unstemmed Geometric Methods and Optimization Problems by V. Boltyanski, H. Martini, V. Soltan
title_short Geometric Methods and Optimization Problems
title_sort geometric methods and optimization problems
topic Mathematics
Electronic data processing
Combinatorics
Discrete groups
Mathematical optimization
Optimization
Calculus of Variations and Optimal Control; Optimization
Convex and Discrete Geometry
Numeric Computing
Datenverarbeitung
Mathematik
Geometrische Methode (DE-588)4156715-8 gnd
Optimierung (DE-588)4043664-0 gnd
topic_facet Mathematics
Electronic data processing
Combinatorics
Discrete groups
Mathematical optimization
Optimization
Calculus of Variations and Optimal Control; Optimization
Convex and Discrete Geometry
Numeric Computing
Datenverarbeitung
Mathematik
Geometrische Methode
Optimierung
url https://doi.org/10.1007/978-1-4615-5319-9
work_keys_str_mv AT boltyanskiv geometricmethodsandoptimizationproblems
AT martinih geometricmethodsandoptimizationproblems
AT soltanv geometricmethodsandoptimizationproblems