Complex Analysis A Functional Analysis Approach

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Luecking, D. H. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: New York, NY Springer New York 1984
Schriftenreihe:Universitext
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042420693
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1984 xx o|||| 00||| eng d
020 |a 9781461382959  |c Online  |9 978-1-4613-8295-9 
020 |a 9780387909936  |c Print  |9 978-0-387-90993-6 
024 7 |a 10.1007/978-1-4613-8295-9  |2 doi 
035 |a (OCoLC)863782425 
035 |a (DE-599)BVBBV042420693 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 515  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Luecking, D. H.  |e Verfasser  |4 aut 
245 1 0 |a Complex Analysis  |b A Functional Analysis Approach  |c by D. H. Luecking, L. A. Rubel 
264 1 |a New York, NY  |b Springer New York  |c 1984 
300 |a 1 Online-Ressource (176p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Universitext  |x 0172-5939 
500 |a The main idea of this book is to present a good portion of the standard material on functions of a complex variable, as well as some new material, from the point of view of functional analysis. The main object of study is the algebra H(G) of all holomorphic functions on the open set G, with the topology on H(G) of uniform convergence on compact subsets of G. From this point of vie~, the main theorem of the theory is Theorem 9.5, which concretely identifies the dual of H(G) with the space of germs of holomorphic functions on the complement of G. From this result, for example, Runge's approximation theorem and the global Cauchy integral theorem follow in a few short steps. Other consequences of this duality theorem are the Germay interpolation theorem and the Mittag-Leffler Theorem. The approach via duality is entirely consistent with Cauchy's approach to complex variables, since curvilinear integrals are typical examples of linear functionals. The prerequisite for the book is a one-semester course in com­ plex variables at the undergraduate-graduate level, so that the elements of the local theory are supposed known. In particular, the Cauchy Theorem for the square and the circle are assumed, but not the global Cauchy Theorem in any of its forms. The second author has three times taught a graduate course based on this material at the University of Illinois, with good results 
650 4 |a Mathematics 
650 4 |a Global analysis (Mathematics) 
650 4 |a Analysis 
650 4 |a Mathematik 
650 0 7 |a Funktionentheorie  |0 (DE-588)4018935-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Holomorphie  |0 (DE-588)4160484-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Funktionalanalysis  |0 (DE-588)4018916-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Funktionentheorie  |0 (DE-588)4018935-1  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Funktionalanalysis  |0 (DE-588)4018916-8  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Holomorphie  |0 (DE-588)4160484-2  |D s 
689 2 |8 3\p  |5 DE-604 
700 1 |a Rubel, L. A.  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-1-4613-8295-9  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027856110 

Datensatz im Suchindex

DE-BY-TUM_katkey 2067702
_version_ 1820806731080400896
any_adam_object
author Luecking, D. H.
author_facet Luecking, D. H.
author_role aut
author_sort Luecking, D. H.
author_variant d h l dh dhl
building Verbundindex
bvnumber BV042420693
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)863782425
(DE-599)BVBBV042420693
dewey-full 515
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515
dewey-search 515
dewey-sort 3515
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-1-4613-8295-9
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03438nam a2200577zc 4500</leader><controlfield tag="001">BV042420693</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1984 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461382959</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-8295-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387909936</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-90993-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-8295-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863782425</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420693</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Luecking, D. H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex Analysis</subfield><subfield code="b">A Functional Analysis Approach</subfield><subfield code="c">by D. H. Luecking, L. A. Rubel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (176p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The main idea of this book is to present a good portion of the standard material on functions of a complex variable, as well as some new material, from the point of view of functional analysis. The main object of study is the algebra H(G) of all holomorphic functions on the open set G, with the topology on H(G) of uniform convergence on compact subsets of G. From this point of vie~, the main theorem of the theory is Theorem 9.5, which concretely identifies the dual of H(G) with the space of germs of holomorphic functions on the complement of G. From this result, for example, Runge's approximation theorem and the global Cauchy integral theorem follow in a few short steps. Other consequences of this duality theorem are the Germay interpolation theorem and the Mittag-Leffler Theorem. The approach via duality is entirely consistent with Cauchy's approach to complex variables, since curvilinear integrals are typical examples of linear functionals. The prerequisite for the book is a one-semester course in com­ plex variables at the undergraduate-graduate level, so that the elements of the local theory are supposed known. In particular, the Cauchy Theorem for the square and the circle are assumed, but not the global Cauchy Theorem in any of its forms. The second author has three times taught a graduate course based on this material at the University of Illinois, with good results</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphie</subfield><subfield code="0">(DE-588)4160484-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Holomorphie</subfield><subfield code="0">(DE-588)4160484-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rubel, L. A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-8295-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856110</subfield></datafield></record></collection>
id DE-604.BV042420693
illustrated Not Illustrated
indexdate 2025-01-08T13:44:19Z
institution BVB
isbn 9781461382959
9780387909936
issn 0172-5939
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027856110
oclc_num 863782425
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (176p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1984
publishDateSearch 1984
publishDateSort 1984
publisher Springer New York
record_format marc
series2 Universitext
spellingShingle Luecking, D. H.
Complex Analysis A Functional Analysis Approach
Mathematics
Global analysis (Mathematics)
Analysis
Mathematik
Funktionentheorie (DE-588)4018935-1 gnd
Holomorphie (DE-588)4160484-2 gnd
Funktionalanalysis (DE-588)4018916-8 gnd
subject_GND (DE-588)4018935-1
(DE-588)4160484-2
(DE-588)4018916-8
title Complex Analysis A Functional Analysis Approach
title_auth Complex Analysis A Functional Analysis Approach
title_exact_search Complex Analysis A Functional Analysis Approach
title_full Complex Analysis A Functional Analysis Approach by D. H. Luecking, L. A. Rubel
title_fullStr Complex Analysis A Functional Analysis Approach by D. H. Luecking, L. A. Rubel
title_full_unstemmed Complex Analysis A Functional Analysis Approach by D. H. Luecking, L. A. Rubel
title_short Complex Analysis
title_sort complex analysis a functional analysis approach
title_sub A Functional Analysis Approach
topic Mathematics
Global analysis (Mathematics)
Analysis
Mathematik
Funktionentheorie (DE-588)4018935-1 gnd
Holomorphie (DE-588)4160484-2 gnd
Funktionalanalysis (DE-588)4018916-8 gnd
topic_facet Mathematics
Global analysis (Mathematics)
Analysis
Mathematik
Funktionentheorie
Holomorphie
Funktionalanalysis
url https://doi.org/10.1007/978-1-4613-8295-9
work_keys_str_mv AT lueckingdh complexanalysisafunctionalanalysisapproach
AT rubella complexanalysisafunctionalanalysisapproach