Probabilistic Number Theory I Mean-Value Theorems

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Elliott, P. D. T. A. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: New York, NY Springer New York 1979
Schriftenreihe:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 239
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042420512
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1979 xx o|||| 00||| eng d
020 |a 9781461299899  |c Online  |9 978-1-4612-9989-9 
020 |a 9781461299912  |c Print  |9 978-1-4612-9991-2 
024 7 |a 10.1007/978-1-4612-9989-9  |2 doi 
035 |a (OCoLC)879624346 
035 |a (DE-599)BVBBV042420512 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 510  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Elliott, P. D. T. A.  |e Verfasser  |4 aut 
245 1 0 |a Probabilistic Number Theory I  |b Mean-Value Theorems  |c by P. D. T. A. Elliott 
264 1 |a New York, NY  |b Springer New York  |c 1979 
300 |a 1 Online-Ressource (393p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics  |v 239  |x 0072-7830 
500 |a In 1791 Gauss made the following assertions (collected works, Vol. 10, p.ll, Teubner, Leipzig 1917): Primzahlen unter a ( = 00 ) a la Zahlen aus zwei Factoren lla· a la (warsch.) aus 3 Factoren 1 (lla)2a --- 2 la et sic in info In more modern notation, let 1tk(X) denote the number of integers not exceeding x which are made up of k distinct prime factors, k = 1, 2, .... Then his assertions amount to the asymptotic estimate x (log log X)k-l ( ) 1tk X '" --"';"'-"---"::--:-'-,- (x-..oo). log x (k-1)! The case k = 1, known as the Prime Number Theorem, was independently established by Hadamard and de la Vallee Poussin in 1896, just over a hundred years later. The general case was deduced by Landau in 1900; it needs only an integration by parts. Nevertheless, one can scarcely say that Probabilistic Number Theory began with Gauss. In 1914 the Indian original mathematician Srinivasa Ramanujan arrived in England. Six years of his short life remained to him during which he wrote, amongst other things, five papers and two notes jointly with G. H. Hardy 
650 4 |a Mathematics 
650 4 |a Mathematics, general 
650 4 |a Mathematik 
856 4 0 |u https://doi.org/10.1007/978-1-4612-9989-9  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027855929 

Datensatz im Suchindex

DE-BY-TUM_katkey 2067521
_version_ 1820806723524362240
any_adam_object
author Elliott, P. D. T. A.
author_facet Elliott, P. D. T. A.
author_role aut
author_sort Elliott, P. D. T. A.
author_variant p d t a e pdta pdtae
building Verbundindex
bvnumber BV042420512
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)879624346
(DE-599)BVBBV042420512
dewey-full 510
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
dewey-raw 510
dewey-search 510
dewey-sort 3510
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-1-4612-9989-9
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02405nam a2200409zcb4500</leader><controlfield tag="001">BV042420512</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1979 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461299899</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-9989-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461299912</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-9991-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-9989-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624346</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420512</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Elliott, P. D. T. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probabilistic Number Theory I</subfield><subfield code="b">Mean-Value Theorems</subfield><subfield code="c">by P. D. T. A. Elliott</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1979</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (393p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics</subfield><subfield code="v">239</subfield><subfield code="x">0072-7830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In 1791 Gauss made the following assertions (collected works, Vol. 10, p.ll, Teubner, Leipzig 1917): Primzahlen unter a ( = 00 ) a la Zahlen aus zwei Factoren lla· a la (warsch.) aus 3 Factoren 1 (lla)2a --- 2 la et sic in info In more modern notation, let 1tk(X) denote the number of integers not exceeding x which are made up of k distinct prime factors, k = 1, 2, .... Then his assertions amount to the asymptotic estimate x (log log X)k-l ( ) 1tk X '" --"';"'-"---"::--:-'-,- (x-..oo). log x (k-1)! The case k = 1, known as the Prime Number Theorem, was independently established by Hadamard and de la Vallee Poussin in 1896, just over a hundred years later. The general case was deduced by Landau in 1900; it needs only an integration by parts. Nevertheless, one can scarcely say that Probabilistic Number Theory began with Gauss. In 1914 the Indian original mathematician Srinivasa Ramanujan arrived in England. Six years of his short life remained to him during which he wrote, amongst other things, five papers and two notes jointly with G. H. Hardy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-9989-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855929</subfield></datafield></record></collection>
id DE-604.BV042420512
illustrated Not Illustrated
indexdate 2024-12-24T04:23:21Z
institution BVB
isbn 9781461299899
9781461299912
issn 0072-7830
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027855929
oclc_num 879624346
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (393p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1979
publishDateSearch 1979
publishDateSort 1979
publisher Springer New York
record_format marc
series2 Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics
spellingShingle Elliott, P. D. T. A.
Probabilistic Number Theory I Mean-Value Theorems
Mathematics
Mathematics, general
Mathematik
title Probabilistic Number Theory I Mean-Value Theorems
title_auth Probabilistic Number Theory I Mean-Value Theorems
title_exact_search Probabilistic Number Theory I Mean-Value Theorems
title_full Probabilistic Number Theory I Mean-Value Theorems by P. D. T. A. Elliott
title_fullStr Probabilistic Number Theory I Mean-Value Theorems by P. D. T. A. Elliott
title_full_unstemmed Probabilistic Number Theory I Mean-Value Theorems by P. D. T. A. Elliott
title_short Probabilistic Number Theory I
title_sort probabilistic number theory i mean value theorems
title_sub Mean-Value Theorems
topic Mathematics
Mathematics, general
Mathematik
topic_facet Mathematics
Mathematics, general
Mathematik
url https://doi.org/10.1007/978-1-4612-9989-9
work_keys_str_mv AT elliottpdta probabilisticnumbertheoryimeanvaluetheorems