Counterexamples in Topology

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Steen, Lynn Arthur (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: New York, NY Springer New York 1978
Ausgabe:Second Edition
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV042420464
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1978 |||| o||u| ||||||eng d
020 |a 9781461262909  |c Online  |9 978-1-4612-6290-9 
020 |a 9780387903125  |c Print  |9 978-0-387-90312-5 
024 7 |a 10.1007/978-1-4612-6290-9  |2 doi 
035 |a (OCoLC)1165483128 
035 |a (DE-599)BVBBV042420464 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 514  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Steen, Lynn Arthur  |e Verfasser  |4 aut 
245 1 0 |a Counterexamples in Topology  |c by Lynn Arthur Steen, J. Arthur Seebach 
250 |a Second Edition 
264 1 |a New York, NY  |b Springer New York  |c 1978 
300 |a 1 Online-Ressource (XII, 244 p.)  |b 5 illus 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a The creative process of mathematics, both historically and individually, may be described as a counterpoint between theorems and examples. Al­ though it would be hazardous to claim that the creation of significant examples is less demanding than the development of theory, we have dis­ covered that focusing on examples is a particularly expeditious means of involving undergraduate mathematics students in actual research. Not only are examples more concrete than theorems-and thus more accessible-but they cut across individual theories and make it both appropriate and neces­ sary for the student to explore the entire literature in journals as well as texts. Indeed, much of the content of this book was first outlined by under­ graduate research teams working with the authors at Saint Olaf College during the summers of 1967 and 1968. In compiling and editing material for this book, both the authors and their undergraduate assistants realized a substantial increment in topologi­ cal insight as a direct result of chasing through details of each example. We hope our readers will have a similar experience. Each of the 143 examples in this book provides innumerable concrete illustrations of definitions, theo­ rems, and general methods of proof. There is no better way, for instance, to learn what the definition of metacompactness really means than to try to prove that Niemytzki's tangent disc topology is not metacompact. The search for counterexamples is as lively and creative an activity as can be found in mathematics research 
650 4 |a Mathematics 
650 4 |a Topology 
650 4 |a Mathematik 
650 0 7 |a Topologischer Raum  |0 (DE-588)4137586-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Gegenbeispiel  |0 (DE-588)4214218-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Topologie  |0 (DE-588)4060425-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Topologie  |0 (DE-588)4060425-1  |D s 
689 0 1 |a Gegenbeispiel  |0 (DE-588)4214218-0  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Topologischer Raum  |0 (DE-588)4137586-5  |D s 
689 1 |8 2\p  |5 DE-604 
700 1 |a Seebach, J. Arthur  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-1-4612-6290-9  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA  |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
999 |a oai:aleph.bib-bvb.de:BVB01-027855881 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_katkey 2067473
_version_ 1816714048496992256
any_adam_object
author Steen, Lynn Arthur
author_facet Steen, Lynn Arthur
author_role aut
author_sort Steen, Lynn Arthur
author_variant l a s la las
building Verbundindex
bvnumber BV042420464
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1165483128
(DE-599)BVBBV042420464
dewey-full 514
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 514 - Topology
dewey-raw 514
dewey-search 514
dewey-sort 3514
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-1-4612-6290-9
edition Second Edition
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03408nmm a2200529zc 4500</leader><controlfield tag="001">BV042420464</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1978 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461262909</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-6290-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387903125</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-90312-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-6290-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165483128</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420464</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Steen, Lynn Arthur</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Counterexamples in Topology</subfield><subfield code="c">by Lynn Arthur Steen, J. Arthur Seebach</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1978</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 244 p.)</subfield><subfield code="b">5 illus</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The creative process of mathematics, both historically and individually, may be described as a counterpoint between theorems and examples. Al­ though it would be hazardous to claim that the creation of significant examples is less demanding than the development of theory, we have dis­ covered that focusing on examples is a particularly expeditious means of involving undergraduate mathematics students in actual research. Not only are examples more concrete than theorems-and thus more accessible-but they cut across individual theories and make it both appropriate and neces­ sary for the student to explore the entire literature in journals as well as texts. Indeed, much of the content of this book was first outlined by under­ graduate research teams working with the authors at Saint Olaf College during the summers of 1967 and 1968. In compiling and editing material for this book, both the authors and their undergraduate assistants realized a substantial increment in topologi­ cal insight as a direct result of chasing through details of each example. We hope our readers will have a similar experience. Each of the 143 examples in this book provides innumerable concrete illustrations of definitions, theo­ rems, and general methods of proof. There is no better way, for instance, to learn what the definition of metacompactness really means than to try to prove that Niemytzki's tangent disc topology is not metacompact. The search for counterexamples is as lively and creative an activity as can be found in mathematics research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologischer Raum</subfield><subfield code="0">(DE-588)4137586-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gegenbeispiel</subfield><subfield code="0">(DE-588)4214218-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gegenbeispiel</subfield><subfield code="0">(DE-588)4214218-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Topologischer Raum</subfield><subfield code="0">(DE-588)4137586-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seebach, J. Arthur</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-6290-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855881</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV042420464
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9781461262909
9780387903125
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027855881
oclc_num 1165483128
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XII, 244 p.) 5 illus
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1978
publishDateSearch 1978
publishDateSort 1978
publisher Springer New York
record_format marc
spellingShingle Steen, Lynn Arthur
Counterexamples in Topology
Mathematics
Topology
Mathematik
Topologischer Raum (DE-588)4137586-5 gnd
Gegenbeispiel (DE-588)4214218-0 gnd
Topologie (DE-588)4060425-1 gnd
subject_GND (DE-588)4137586-5
(DE-588)4214218-0
(DE-588)4060425-1
title Counterexamples in Topology
title_auth Counterexamples in Topology
title_exact_search Counterexamples in Topology
title_full Counterexamples in Topology by Lynn Arthur Steen, J. Arthur Seebach
title_fullStr Counterexamples in Topology by Lynn Arthur Steen, J. Arthur Seebach
title_full_unstemmed Counterexamples in Topology by Lynn Arthur Steen, J. Arthur Seebach
title_short Counterexamples in Topology
title_sort counterexamples in topology
topic Mathematics
Topology
Mathematik
Topologischer Raum (DE-588)4137586-5 gnd
Gegenbeispiel (DE-588)4214218-0 gnd
Topologie (DE-588)4060425-1 gnd
topic_facet Mathematics
Topology
Mathematik
Topologischer Raum
Gegenbeispiel
Topologie
url https://doi.org/10.1007/978-1-4612-6290-9
work_keys_str_mv AT steenlynnarthur counterexamplesintopology
AT seebachjarthur counterexamplesintopology