Singularities of Differentiable Maps Volume II Monodromy and Asymptotic Integrals

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Arnolʹd, V. I. 1937-2010 (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Birkhäuser Boston 1988
Schriftenreihe:Monographs in Mathematics 83
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042420178
003 DE-604
005 20170728
007 cr|uuu---uuuuu
008 150317s1988 xx a||| o|||| 00||| eng d
020 |a 9781461239406  |c Online  |9 978-1-4612-3940-6 
020 |a 9781461284086  |c Print  |9 978-1-4612-8408-6 
024 7 |a 10.1007/978-1-4612-3940-6  |2 doi 
035 |a (OCoLC)863749619 
035 |a (DE-599)BVBBV042420178 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 516.36  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Arnolʹd, V. I.  |d 1937-2010  |e Verfasser  |0 (DE-588)119540878  |4 aut 
245 1 0 |a Singularities of Differentiable Maps  |b Volume II Monodromy and Asymptotic Integrals  |c edited by V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko 
264 1 |a Boston, MA  |b Birkhäuser Boston  |c 1988 
300 |a 1 Online-Ressource (VIII, 492 p.)  |b 5 illus 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Monographs in Mathematics  |v 83 
500 |a The present. volume is the second volume of the book "Singularities of Differentiable Maps" by V.1. Arnold, A. N. Varchenko and S. M. Gusein-Zade. The first volume, subtitled "Classification of critical points, caustics and wave fronts", was published by Moscow, "Nauka", in 1982. It will be referred to in this text simply as "Volume 1". Whilst the first volume contained the zoology of differentiable maps, that is it was devoted to a description of what, where and how singularities could be encountered, this volume contains the elements of the anatomy and physiology of singularities of differentiable functions. This means that the questions considered in it are about the structure of singularities and how they function. Another distinctive feature of the present volume is that we take a hard look at questions for which it is important to work in the complex domain, where the first volume was devoted to themes for which, on the whole, it was not important which field (real or complex) we were considering. Such topics as, for example, decomposition of singularities, the connection between singularities and Lie algebras and the asymptotic behaviour of different integrals depending on parameters become clearer in the complex domain. The book consists of three parts. In the first part we consider the topological structure of isolated critical points of holomorphic functions. We describe the fundamental topological characteristics of such critical points: vanishing cycles, distinguished bases, intersection matrices, monodromy groups, the variation operator and their interconnections and method of calculation 
650 4 |a Mathematics 
650 4 |a Global differential geometry 
650 4 |a Cell aggregation / Mathematics 
650 4 |a Differential Geometry 
650 4 |a Manifolds and Cell Complexes (incl. Diff.Topology) 
650 4 |a Mathematik 
700 1 |a Gusejn-Zade, Sabir M.  |e Sonstige  |0 (DE-588)170920453  |4 oth 
700 1 |a Varčenko, Aleksandr N.  |d 1949-  |e Sonstige  |0 (DE-588)115203257  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-1-4612-3940-6  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027855595 

Datensatz im Suchindex

DE-BY-TUM_katkey 2067187
_version_ 1820806714927087616
any_adam_object
author Arnolʹd, V. I. 1937-2010
author_GND (DE-588)119540878
(DE-588)170920453
(DE-588)115203257
author_facet Arnolʹd, V. I. 1937-2010
author_role aut
author_sort Arnolʹd, V. I. 1937-2010
author_variant v i a vi via
building Verbundindex
bvnumber BV042420178
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)863749619
(DE-599)BVBBV042420178
dewey-full 516.36
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.36
dewey-search 516.36
dewey-sort 3516.36
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-1-4612-3940-6
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03318nam a2200469zcb4500</leader><controlfield tag="001">BV042420178</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170728 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461239406</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-3940-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461284086</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-8408-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-3940-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863749619</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420178</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arnolʹd, V. I.</subfield><subfield code="d">1937-2010</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119540878</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Singularities of Differentiable Maps</subfield><subfield code="b">Volume II Monodromy and Asymptotic Integrals</subfield><subfield code="c">edited by V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 492 p.)</subfield><subfield code="b">5 illus</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Monographs in Mathematics</subfield><subfield code="v">83</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The present. volume is the second volume of the book "Singularities of Differentiable Maps" by V.1. Arnold, A. N. Varchenko and S. M. Gusein-Zade. The first volume, subtitled "Classification of critical points, caustics and wave fronts", was published by Moscow, "Nauka", in 1982. It will be referred to in this text simply as "Volume 1". Whilst the first volume contained the zoology of differentiable maps, that is it was devoted to a description of what, where and how singularities could be encountered, this volume contains the elements of the anatomy and physiology of singularities of differentiable functions. This means that the questions considered in it are about the structure of singularities and how they function. Another distinctive feature of the present volume is that we take a hard look at questions for which it is important to work in the complex domain, where the first volume was devoted to themes for which, on the whole, it was not important which field (real or complex) we were considering. Such topics as, for example, decomposition of singularities, the connection between singularities and Lie algebras and the asymptotic behaviour of different integrals depending on parameters become clearer in the complex domain. The book consists of three parts. In the first part we consider the topological structure of isolated critical points of holomorphic functions. We describe the fundamental topological characteristics of such critical points: vanishing cycles, distinguished bases, intersection matrices, monodromy groups, the variation operator and their interconnections and method of calculation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gusejn-Zade, Sabir M.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)170920453</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Varčenko, Aleksandr N.</subfield><subfield code="d">1949-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)115203257</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-3940-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855595</subfield></datafield></record></collection>
id DE-604.BV042420178
illustrated Illustrated
indexdate 2025-01-08T13:44:12Z
institution BVB
isbn 9781461239406
9781461284086
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027855595
oclc_num 863749619
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (VIII, 492 p.) 5 illus
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1988
publishDateSearch 1988
publishDateSort 1988
publisher Birkhäuser Boston
record_format marc
series2 Monographs in Mathematics
spellingShingle Arnolʹd, V. I. 1937-2010
Singularities of Differentiable Maps Volume II Monodromy and Asymptotic Integrals
Mathematics
Global differential geometry
Cell aggregation / Mathematics
Differential Geometry
Manifolds and Cell Complexes (incl. Diff.Topology)
Mathematik
title Singularities of Differentiable Maps Volume II Monodromy and Asymptotic Integrals
title_auth Singularities of Differentiable Maps Volume II Monodromy and Asymptotic Integrals
title_exact_search Singularities of Differentiable Maps Volume II Monodromy and Asymptotic Integrals
title_full Singularities of Differentiable Maps Volume II Monodromy and Asymptotic Integrals edited by V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko
title_fullStr Singularities of Differentiable Maps Volume II Monodromy and Asymptotic Integrals edited by V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko
title_full_unstemmed Singularities of Differentiable Maps Volume II Monodromy and Asymptotic Integrals edited by V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko
title_short Singularities of Differentiable Maps
title_sort singularities of differentiable maps volume ii monodromy and asymptotic integrals
title_sub Volume II Monodromy and Asymptotic Integrals
topic Mathematics
Global differential geometry
Cell aggregation / Mathematics
Differential Geometry
Manifolds and Cell Complexes (incl. Diff.Topology)
Mathematik
topic_facet Mathematics
Global differential geometry
Cell aggregation / Mathematics
Differential Geometry
Manifolds and Cell Complexes (incl. Diff.Topology)
Mathematik
url https://doi.org/10.1007/978-1-4612-3940-6
work_keys_str_mv AT arnolʹdvi singularitiesofdifferentiablemapsvolumeiimonodromyandasymptoticintegrals
AT gusejnzadesabirm singularitiesofdifferentiablemapsvolumeiimonodromyandasymptoticintegrals
AT varcenkoaleksandrn singularitiesofdifferentiablemapsvolumeiimonodromyandasymptoticintegrals