Algebraic Surfaces and Holomorphic Vector Bundles
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1998
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419886 | ||
003 | DE-604 | ||
005 | 20171019 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781461216889 |c Online |9 978-1-4612-1688-9 | ||
020 | |a 9781461272465 |c Print |9 978-1-4612-7246-5 | ||
024 | 7 | |a 10.1007/978-1-4612-1688-9 |2 doi | |
035 | |a (OCoLC)869863680 | ||
035 | |a (DE-599)BVBBV042419886 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Friedman, Robert |e Verfasser |4 aut | |
245 | 1 | 0 | |a Algebraic Surfaces and Holomorphic Vector Bundles |c by Robert Friedman |
264 | 1 | |a New York, NY |b Springer New York |c 1998 | |
300 | |a 1 Online-Ressource (IX, 329 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a This book is based on courses given at Columbia University on vector bundles (1988) and on the theory of algebraic surfaces (1992), as well as lectures in the Park City lIAS Mathematics Institute on 4-manifolds and Donaldson invariants. The goal of these lectures was to acquaint researchers in 4-manifold topology with the classification of algebraic surfaces and with methods for describing moduli spaces of holomorphic bundles on algebraic surfaces with a view toward computing Donaldson invariants. Since that time, the focus of 4-manifold topology has shifted dramatically, at first because topological methods have largely superseded algebro-geometric methods in computing Donaldson invariants, and more importantly because of the new invariants defined by Seiberg and Witten, which have greatly simplified the theory and led to proofs of the basic conjectures concerning the 4-manifold topology of algebraic surfaces. However, the study of algebraic surfaces and the moduli spaces of bundles on them remains a fundamental problem in algebraic geometry, and I hope that this book will make this subject more accessible. Moreover, the recent applications of SeibergWitten theory to symplectic 4-manifolds suggest that there is room for yet another treatment of the classification of algebraic surfaces. In particular, despite the number of excellent books concerning algebraic surfaces, I hope that the half of this book devoted to them will serve as an introduction to the subject | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Vektorraumbündel |0 (DE-588)4187470-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Fläche |0 (DE-588)4195660-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Vektorraumbündel |0 (DE-588)4187470-5 |D s |
689 | 0 | 1 | |a Algebraische Fläche |0 (DE-588)4195660-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1688-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855303 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2066895 |
---|---|
_version_ | 1816714047963267072 |
any_adam_object | |
author | Friedman, Robert |
author_facet | Friedman, Robert |
author_role | aut |
author_sort | Friedman, Robert |
author_variant | r f rf |
building | Verbundindex |
bvnumber | BV042419886 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869863680 (DE-599)BVBBV042419886 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-1688-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03133nmm a2200481zc 4500</leader><controlfield tag="001">BV042419886</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171019 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461216889</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1688-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461272465</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7246-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1688-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869863680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419886</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Friedman, Robert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic Surfaces and Holomorphic Vector Bundles</subfield><subfield code="c">by Robert Friedman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 329 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is based on courses given at Columbia University on vector bundles (1988) and on the theory of algebraic surfaces (1992), as well as lectures in the Park City lIAS Mathematics Institute on 4-manifolds and Donaldson invariants. The goal of these lectures was to acquaint researchers in 4-manifold topology with the classification of algebraic surfaces and with methods for describing moduli spaces of holomorphic bundles on algebraic surfaces with a view toward computing Donaldson invariants. Since that time, the focus of 4-manifold topology has shifted dramatically, at first because topological methods have largely superseded algebro-geometric methods in computing Donaldson invariants, and more importantly because of the new invariants defined by Seiberg and Witten, which have greatly simplified the theory and led to proofs of the basic conjectures concerning the 4-manifold topology of algebraic surfaces. However, the study of algebraic surfaces and the moduli spaces of bundles on them remains a fundamental problem in algebraic geometry, and I hope that this book will make this subject more accessible. Moreover, the recent applications of SeibergWitten theory to symplectic 4-manifolds suggest that there is room for yet another treatment of the classification of algebraic surfaces. In particular, despite the number of excellent books concerning algebraic surfaces, I hope that the half of this book devoted to them will serve as an introduction to the subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorraumbündel</subfield><subfield code="0">(DE-588)4187470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Fläche</subfield><subfield code="0">(DE-588)4195660-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vektorraumbündel</subfield><subfield code="0">(DE-588)4187470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Fläche</subfield><subfield code="0">(DE-588)4195660-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1688-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855303</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419886 |
illustrated | Not Illustrated |
indexdate | 2024-11-25T17:51:13Z |
institution | BVB |
isbn | 9781461216889 9781461272465 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855303 |
oclc_num | 869863680 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 329 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer New York |
record_format | marc |
series2 | Universitext |
spellingShingle | Friedman, Robert Algebraic Surfaces and Holomorphic Vector Bundles Mathematics Geometry, algebraic Algebraic Geometry Mathematik Vektorraumbündel (DE-588)4187470-5 gnd Algebraische Fläche (DE-588)4195660-6 gnd |
subject_GND | (DE-588)4187470-5 (DE-588)4195660-6 |
title | Algebraic Surfaces and Holomorphic Vector Bundles |
title_auth | Algebraic Surfaces and Holomorphic Vector Bundles |
title_exact_search | Algebraic Surfaces and Holomorphic Vector Bundles |
title_full | Algebraic Surfaces and Holomorphic Vector Bundles by Robert Friedman |
title_fullStr | Algebraic Surfaces and Holomorphic Vector Bundles by Robert Friedman |
title_full_unstemmed | Algebraic Surfaces and Holomorphic Vector Bundles by Robert Friedman |
title_short | Algebraic Surfaces and Holomorphic Vector Bundles |
title_sort | algebraic surfaces and holomorphic vector bundles |
topic | Mathematics Geometry, algebraic Algebraic Geometry Mathematik Vektorraumbündel (DE-588)4187470-5 gnd Algebraische Fläche (DE-588)4195660-6 gnd |
topic_facet | Mathematics Geometry, algebraic Algebraic Geometry Mathematik Vektorraumbündel Algebraische Fläche |
url | https://doi.org/10.1007/978-1-4612-1688-9 |
work_keys_str_mv | AT friedmanrobert algebraicsurfacesandholomorphicvectorbundles |