Algebraic Surfaces and Holomorphic Vector Bundles

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Friedman, Robert (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: New York, NY Springer New York 1998
Schriftenreihe:Universitext
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV042419886
003 DE-604
005 20171019
007 cr|uuu---uuuuu
008 150317s1998 |||| o||u| ||||||eng d
020 |a 9781461216889  |c Online  |9 978-1-4612-1688-9 
020 |a 9781461272465  |c Print  |9 978-1-4612-7246-5 
024 7 |a 10.1007/978-1-4612-1688-9  |2 doi 
035 |a (OCoLC)869863680 
035 |a (DE-599)BVBBV042419886 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 516.35  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Friedman, Robert  |e Verfasser  |4 aut 
245 1 0 |a Algebraic Surfaces and Holomorphic Vector Bundles  |c by Robert Friedman 
264 1 |a New York, NY  |b Springer New York  |c 1998 
300 |a 1 Online-Ressource (IX, 329 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Universitext  |x 0172-5939 
500 |a This book is based on courses given at Columbia University on vector bundles (1988) and on the theory of algebraic surfaces (1992), as well as lectures in the Park City lIAS Mathematics Institute on 4-manifolds and Donaldson invariants. The goal of these lectures was to acquaint researchers in 4-manifold topology with the classification of algebraic surfaces and with methods for describing moduli spaces of holomorphic bundles on algebraic surfaces with a view toward computing Donaldson invariants. Since that time, the focus of 4-manifold topology has shifted dramatically, at first because topological methods have largely superseded algebro-geometric methods in computing Donaldson invariants, and more importantly because of the new invariants defined by Seiberg and Witten, which have greatly simplified the theory and led to proofs of the basic conjectures concerning the 4-manifold topology of algebraic surfaces. However, the study of algebraic surfaces and the moduli spaces of bundles on them remains a fundamental problem in algebraic geometry, and I hope that this book will make this subject more accessible. Moreover, the recent applications of Seiberg­Witten theory to symplectic 4-manifolds suggest that there is room for yet another treatment of the classification of algebraic surfaces. In particular, despite the number of excellent books concerning algebraic surfaces, I hope that the half of this book devoted to them will serve as an introduction to the subject 
650 4 |a Mathematics 
650 4 |a Geometry, algebraic 
650 4 |a Algebraic Geometry 
650 4 |a Mathematik 
650 0 7 |a Vektorraumbündel  |0 (DE-588)4187470-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraische Fläche  |0 (DE-588)4195660-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Vektorraumbündel  |0 (DE-588)4187470-5  |D s 
689 0 1 |a Algebraische Fläche  |0 (DE-588)4195660-6  |D s 
689 0 |8 1\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-1-4612-1688-9  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA  |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
999 |a oai:aleph.bib-bvb.de:BVB01-027855303 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_katkey 2066895
_version_ 1816714047963267072
any_adam_object
author Friedman, Robert
author_facet Friedman, Robert
author_role aut
author_sort Friedman, Robert
author_variant r f rf
building Verbundindex
bvnumber BV042419886
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)869863680
(DE-599)BVBBV042419886
dewey-full 516.35
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.35
dewey-search 516.35
dewey-sort 3516.35
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-1-4612-1688-9
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03133nmm a2200481zc 4500</leader><controlfield tag="001">BV042419886</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171019 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461216889</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1688-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461272465</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7246-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1688-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869863680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419886</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Friedman, Robert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic Surfaces and Holomorphic Vector Bundles</subfield><subfield code="c">by Robert Friedman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 329 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is based on courses given at Columbia University on vector bundles (1988) and on the theory of algebraic surfaces (1992), as well as lectures in the Park City lIAS Mathematics Institute on 4-manifolds and Donaldson invariants. The goal of these lectures was to acquaint researchers in 4-manifold topology with the classification of algebraic surfaces and with methods for describing moduli spaces of holomorphic bundles on algebraic surfaces with a view toward computing Donaldson invariants. Since that time, the focus of 4-manifold topology has shifted dramatically, at first because topological methods have largely superseded algebro-geometric methods in computing Donaldson invariants, and more importantly because of the new invariants defined by Seiberg and Witten, which have greatly simplified the theory and led to proofs of the basic conjectures concerning the 4-manifold topology of algebraic surfaces. However, the study of algebraic surfaces and the moduli spaces of bundles on them remains a fundamental problem in algebraic geometry, and I hope that this book will make this subject more accessible. Moreover, the recent applications of Seiberg­Witten theory to symplectic 4-manifolds suggest that there is room for yet another treatment of the classification of algebraic surfaces. In particular, despite the number of excellent books concerning algebraic surfaces, I hope that the half of this book devoted to them will serve as an introduction to the subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorraumbündel</subfield><subfield code="0">(DE-588)4187470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Fläche</subfield><subfield code="0">(DE-588)4195660-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vektorraumbündel</subfield><subfield code="0">(DE-588)4187470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Fläche</subfield><subfield code="0">(DE-588)4195660-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1688-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855303</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV042419886
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9781461216889
9781461272465
issn 0172-5939
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027855303
oclc_num 869863680
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (IX, 329 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher Springer New York
record_format marc
series2 Universitext
spellingShingle Friedman, Robert
Algebraic Surfaces and Holomorphic Vector Bundles
Mathematics
Geometry, algebraic
Algebraic Geometry
Mathematik
Vektorraumbündel (DE-588)4187470-5 gnd
Algebraische Fläche (DE-588)4195660-6 gnd
subject_GND (DE-588)4187470-5
(DE-588)4195660-6
title Algebraic Surfaces and Holomorphic Vector Bundles
title_auth Algebraic Surfaces and Holomorphic Vector Bundles
title_exact_search Algebraic Surfaces and Holomorphic Vector Bundles
title_full Algebraic Surfaces and Holomorphic Vector Bundles by Robert Friedman
title_fullStr Algebraic Surfaces and Holomorphic Vector Bundles by Robert Friedman
title_full_unstemmed Algebraic Surfaces and Holomorphic Vector Bundles by Robert Friedman
title_short Algebraic Surfaces and Holomorphic Vector Bundles
title_sort algebraic surfaces and holomorphic vector bundles
topic Mathematics
Geometry, algebraic
Algebraic Geometry
Mathematik
Vektorraumbündel (DE-588)4187470-5 gnd
Algebraische Fläche (DE-588)4195660-6 gnd
topic_facet Mathematics
Geometry, algebraic
Algebraic Geometry
Mathematik
Vektorraumbündel
Algebraische Fläche
url https://doi.org/10.1007/978-1-4612-1688-9
work_keys_str_mv AT friedmanrobert algebraicsurfacesandholomorphicvectorbundles