Singular Loci of Schubert Varieties

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Billey, Sara (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Birkhäuser Boston 2000
Schriftenreihe:Progress in Mathematics 182
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV042419802
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s2000 |||| o||u| ||||||eng d
020 |a 9781461213246  |c Online  |9 978-1-4612-1324-6 
020 |a 9781461270942  |c Print  |9 978-1-4612-7094-2 
024 7 |a 10.1007/978-1-4612-1324-6  |2 doi 
035 |a (OCoLC)879624685 
035 |a (DE-599)BVBBV042419802 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 516.35  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Billey, Sara  |e Verfasser  |4 aut 
245 1 0 |a Singular Loci of Schubert Varieties  |c by Sara Billey, V. Lakshmibai 
264 1 |a Boston, MA  |b Birkhäuser Boston  |c 2000 
300 |a 1 Online-Ressource (XII, 251 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Progress in Mathematics  |v 182 
500 |a "Singular Loci of Schubert Varieties" is a unique work at the crossroads of representation theory, algebraic geometry, and combinatorics. Over the past 20 years, many research articles have been written on the subject in notable journals. In this work, Billey and Lakshmibai have recreated and restructured the various theories and approaches of those articles and present a clearer understanding of this important subdiscipline of Schubert varieties – namely singular loci. The main focus, therefore, is on the computations for the singular loci of Schubert varieties and corresponding tangent spaces. The methods used include standard monomial theory, the nil Hecke ring, and Kazhdan-Lusztig theory. New results are presented with sufficient examples to emphasize key points. A comprehensive bibliography, index, and tables – the latter not to be found elsewhere in the mathematics literature – round out this concise work. After a good introduction giving background material, the topics are presented in a systematic fashion to engage a wide readership of researchers and graduate students 
650 4 |a Mathematics 
650 4 |a Geometry, algebraic 
650 4 |a Topological Groups 
650 4 |a Combinatorics 
650 4 |a Global differential geometry 
650 4 |a Algebraic Geometry 
650 4 |a Topological Groups, Lie Groups 
650 4 |a Differential Geometry 
650 4 |a Mathematik 
650 0 7 |a Singularität  |g Mathematik  |0 (DE-588)4077459-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Schubert-Mannigfaltigkeit  |0 (DE-588)4512043-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Schubert-Mannigfaltigkeit  |0 (DE-588)4512043-2  |D s 
689 0 1 |a Singularität  |g Mathematik  |0 (DE-588)4077459-4  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Lakshmibai, V.  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-1-4612-1324-6  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA  |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
999 |a oai:aleph.bib-bvb.de:BVB01-027855219 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_katkey 2066811
_version_ 1816714047928664064
any_adam_object
author Billey, Sara
author_facet Billey, Sara
author_role aut
author_sort Billey, Sara
author_variant s b sb
building Verbundindex
bvnumber BV042419802
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)879624685
(DE-599)BVBBV042419802
dewey-full 516.35
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.35
dewey-search 516.35
dewey-sort 3516.35
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-1-4612-1324-6
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03009nmm a2200553zcb4500</leader><controlfield tag="001">BV042419802</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461213246</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1324-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461270942</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7094-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1324-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624685</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419802</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Billey, Sara</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Singular Loci of Schubert Varieties</subfield><subfield code="c">by Sara Billey, V. Lakshmibai</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 251 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">182</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Singular Loci of Schubert Varieties" is a unique work at the crossroads of representation theory, algebraic geometry, and combinatorics. Over the past 20 years, many research articles have been written on the subject in notable journals. In this work, Billey and Lakshmibai have recreated and restructured the various theories and approaches of those articles and present a clearer understanding of this important subdiscipline of Schubert varieties – namely singular loci. The main focus, therefore, is on the computations for the singular loci of Schubert varieties and corresponding tangent spaces. The methods used include standard monomial theory, the nil Hecke ring, and Kazhdan-Lusztig theory. New results are presented with sufficient examples to emphasize key points. A comprehensive bibliography, index, and tables – the latter not to be found elsewhere in the mathematics literature – round out this concise work. After a good introduction giving background material, the topics are presented in a systematic fashion to engage a wide readership of researchers and graduate students</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schubert-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4512043-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schubert-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4512043-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lakshmibai, V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1324-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855219</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV042419802
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9781461213246
9781461270942
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027855219
oclc_num 879624685
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XII, 251 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 2000
publishDateSearch 2000
publishDateSort 2000
publisher Birkhäuser Boston
record_format marc
series2 Progress in Mathematics
spellingShingle Billey, Sara
Singular Loci of Schubert Varieties
Mathematics
Geometry, algebraic
Topological Groups
Combinatorics
Global differential geometry
Algebraic Geometry
Topological Groups, Lie Groups
Differential Geometry
Mathematik
Singularität Mathematik (DE-588)4077459-4 gnd
Schubert-Mannigfaltigkeit (DE-588)4512043-2 gnd
subject_GND (DE-588)4077459-4
(DE-588)4512043-2
title Singular Loci of Schubert Varieties
title_auth Singular Loci of Schubert Varieties
title_exact_search Singular Loci of Schubert Varieties
title_full Singular Loci of Schubert Varieties by Sara Billey, V. Lakshmibai
title_fullStr Singular Loci of Schubert Varieties by Sara Billey, V. Lakshmibai
title_full_unstemmed Singular Loci of Schubert Varieties by Sara Billey, V. Lakshmibai
title_short Singular Loci of Schubert Varieties
title_sort singular loci of schubert varieties
topic Mathematics
Geometry, algebraic
Topological Groups
Combinatorics
Global differential geometry
Algebraic Geometry
Topological Groups, Lie Groups
Differential Geometry
Mathematik
Singularität Mathematik (DE-588)4077459-4 gnd
Schubert-Mannigfaltigkeit (DE-588)4512043-2 gnd
topic_facet Mathematics
Geometry, algebraic
Topological Groups
Combinatorics
Global differential geometry
Algebraic Geometry
Topological Groups, Lie Groups
Differential Geometry
Mathematik
Singularität Mathematik
Schubert-Mannigfaltigkeit
url https://doi.org/10.1007/978-1-4612-1324-6
work_keys_str_mv AT billeysara singularlociofschubertvarieties
AT lakshmibaiv singularlociofschubertvarieties