Variational Inequalities and Flow in Porous Media

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Chipot, M. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: New York, NY Springer New York 1984
Schriftenreihe:Applied Mathematical Sciences 52
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042419754
003 DE-604
005 20200707
007 cr|uuu---uuuuu
008 150317s1984 xx o|||| 00||| eng d
020 |a 9781461211204  |c Online  |9 978-1-4612-1120-4 
020 |a 9780387960029  |c Print  |9 978-0-387-96002-9 
024 7 |a 10.1007/978-1-4612-1120-4  |2 doi 
035 |a (OCoLC)863692880 
035 |a (DE-599)BVBBV042419754 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 530.1  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Chipot, M.  |e Verfasser  |4 aut 
245 1 0 |a Variational Inequalities and Flow in Porous Media  |c by M. Chipot 
264 1 |a New York, NY  |b Springer New York  |c 1984 
300 |a 1 Online-Ressource (VII, 118p. 13 illus) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Applied Mathematical Sciences  |v 52 
500 |a These notes are the contents of a one semester graduate course which taught at Brown University during the academic year 1981-1982. They are mainly concerned with regularity theory for obstacle problems, and with the dam problem, which, in the rectangular case, is one of the most interesting applications of Variational Inequalities with an obstacle. Very little background is needed to read these notes. The main results of functional analysis which are used here are recalled in the text. The goal of the two first chapters is to introduce the notion of Variational Inequality and give some applications from physical mathematics. The third chapter is concerned with a regularity theory for the obstacle problems. These problems have now invaded a large domain of applied mathematics including optimal control theory and mechanics, and a collection of regularity results available seems to be timely. Roughly speaking, for elliptic variational inequalities of second order we prove that the solution has as much regularity as the obstacle(s). We combine here the theory for one or two obstacles in a unified way, and one of our hopes is that the reader will enjoy the wide diversity of techniques used in this approach. The fourth chapter is concerned with the dam problem. This problem has been intensively studied during the past decade (see the books of Baiocchi-Capelo and Kinderlehrer-Stampacchia in the references). The relationship with Variational Inequalities has already been quoted above 
650 4 |a Physics 
650 4 |a Theoretical, Mathematical and Computational Physics 
650 0 7 |a Strömungsmechanik  |0 (DE-588)4077970-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Poröser Stoff  |0 (DE-588)4046811-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Variationsungleichung  |0 (DE-588)4187420-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Variationsungleichung  |0 (DE-588)4187420-1  |D s 
689 0 1 |a Poröser Stoff  |0 (DE-588)4046811-2  |D s 
689 0 2 |a Strömungsmechanik  |0 (DE-588)4077970-1  |D s 
689 0 |8 1\p  |5 DE-604 
830 0 |a Applied Mathematical Sciences  |v 52  |w (DE-604)BV040244599  |9 52 
856 4 0 |u https://doi.org/10.1007/978-1-4612-1120-4  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027855171 

Datensatz im Suchindex

DE-BY-TUM_katkey 2066763
_version_ 1820806705193156608
any_adam_object
author Chipot, M.
author_facet Chipot, M.
author_role aut
author_sort Chipot, M.
author_variant m c mc
building Verbundindex
bvnumber BV042419754
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)863692880
(DE-599)BVBBV042419754
dewey-full 530.1
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 530 - Physics
dewey-raw 530.1
dewey-search 530.1
dewey-sort 3530.1
dewey-tens 530 - Physics
discipline Physik
Mathematik
doi_str_mv 10.1007/978-1-4612-1120-4
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03331nam a2200505zcb4500</leader><controlfield tag="001">BV042419754</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200707 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1984 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461211204</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1120-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387960029</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-96002-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1120-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863692880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419754</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chipot, M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Variational Inequalities and Flow in Porous Media</subfield><subfield code="c">by M. Chipot</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 118p. 13 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">52</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">These notes are the contents of a one semester graduate course which taught at Brown University during the academic year 1981-1982. They are mainly concerned with regularity theory for obstacle problems, and with the dam problem, which, in the rectangular case, is one of the most interesting applications of Variational Inequalities with an obstacle. Very little background is needed to read these notes. The main results of functional analysis which are used here are recalled in the text. The goal of the two first chapters is to introduce the notion of Variational Inequality and give some applications from physical mathematics. The third chapter is concerned with a regularity theory for the obstacle problems. These problems have now invaded a large domain of applied mathematics including optimal control theory and mechanics, and a collection of regularity results available seems to be timely. Roughly speaking, for elliptic variational inequalities of second order we prove that the solution has as much regularity as the obstacle(s). We combine here the theory for one or two obstacles in a unified way, and one of our hopes is that the reader will enjoy the wide diversity of techniques used in this approach. The fourth chapter is concerned with the dam problem. This problem has been intensively studied during the past decade (see the books of Baiocchi-Capelo and Kinderlehrer-Stampacchia in the references). The relationship with Variational Inequalities has already been quoted above</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Poröser Stoff</subfield><subfield code="0">(DE-588)4046811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsungleichung</subfield><subfield code="0">(DE-588)4187420-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Variationsungleichung</subfield><subfield code="0">(DE-588)4187420-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Poröser Stoff</subfield><subfield code="0">(DE-588)4046811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">52</subfield><subfield code="w">(DE-604)BV040244599</subfield><subfield code="9">52</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1120-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855171</subfield></datafield></record></collection>
id DE-604.BV042419754
illustrated Not Illustrated
indexdate 2024-12-24T04:23:20Z
institution BVB
isbn 9781461211204
9780387960029
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027855171
oclc_num 863692880
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (VII, 118p. 13 illus)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1984
publishDateSearch 1984
publishDateSort 1984
publisher Springer New York
record_format marc
series Applied Mathematical Sciences
series2 Applied Mathematical Sciences
spellingShingle Chipot, M.
Variational Inequalities and Flow in Porous Media
Applied Mathematical Sciences
Physics
Theoretical, Mathematical and Computational Physics
Strömungsmechanik (DE-588)4077970-1 gnd
Poröser Stoff (DE-588)4046811-2 gnd
Variationsungleichung (DE-588)4187420-1 gnd
subject_GND (DE-588)4077970-1
(DE-588)4046811-2
(DE-588)4187420-1
title Variational Inequalities and Flow in Porous Media
title_auth Variational Inequalities and Flow in Porous Media
title_exact_search Variational Inequalities and Flow in Porous Media
title_full Variational Inequalities and Flow in Porous Media by M. Chipot
title_fullStr Variational Inequalities and Flow in Porous Media by M. Chipot
title_full_unstemmed Variational Inequalities and Flow in Porous Media by M. Chipot
title_short Variational Inequalities and Flow in Porous Media
title_sort variational inequalities and flow in porous media
topic Physics
Theoretical, Mathematical and Computational Physics
Strömungsmechanik (DE-588)4077970-1 gnd
Poröser Stoff (DE-588)4046811-2 gnd
Variationsungleichung (DE-588)4187420-1 gnd
topic_facet Physics
Theoretical, Mathematical and Computational Physics
Strömungsmechanik
Poröser Stoff
Variationsungleichung
url https://doi.org/10.1007/978-1-4612-1120-4
volume_link (DE-604)BV040244599
work_keys_str_mv AT chipotm variationalinequalitiesandflowinporousmedia