Variational Inequalities and Flow in Porous Media
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1984
|
Schriftenreihe: | Applied Mathematical Sciences
52 |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419754 | ||
003 | DE-604 | ||
005 | 20200707 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1984 xx o|||| 00||| eng d | ||
020 | |a 9781461211204 |c Online |9 978-1-4612-1120-4 | ||
020 | |a 9780387960029 |c Print |9 978-0-387-96002-9 | ||
024 | 7 | |a 10.1007/978-1-4612-1120-4 |2 doi | |
035 | |a (OCoLC)863692880 | ||
035 | |a (DE-599)BVBBV042419754 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Chipot, M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Variational Inequalities and Flow in Porous Media |c by M. Chipot |
264 | 1 | |a New York, NY |b Springer New York |c 1984 | |
300 | |a 1 Online-Ressource (VII, 118p. 13 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Applied Mathematical Sciences |v 52 | |
500 | |a These notes are the contents of a one semester graduate course which taught at Brown University during the academic year 1981-1982. They are mainly concerned with regularity theory for obstacle problems, and with the dam problem, which, in the rectangular case, is one of the most interesting applications of Variational Inequalities with an obstacle. Very little background is needed to read these notes. The main results of functional analysis which are used here are recalled in the text. The goal of the two first chapters is to introduce the notion of Variational Inequality and give some applications from physical mathematics. The third chapter is concerned with a regularity theory for the obstacle problems. These problems have now invaded a large domain of applied mathematics including optimal control theory and mechanics, and a collection of regularity results available seems to be timely. Roughly speaking, for elliptic variational inequalities of second order we prove that the solution has as much regularity as the obstacle(s). We combine here the theory for one or two obstacles in a unified way, and one of our hopes is that the reader will enjoy the wide diversity of techniques used in this approach. The fourth chapter is concerned with the dam problem. This problem has been intensively studied during the past decade (see the books of Baiocchi-Capelo and Kinderlehrer-Stampacchia in the references). The relationship with Variational Inequalities has already been quoted above | ||
650 | 4 | |a Physics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Poröser Stoff |0 (DE-588)4046811-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Variationsungleichung |0 (DE-588)4187420-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Variationsungleichung |0 (DE-588)4187420-1 |D s |
689 | 0 | 1 | |a Poröser Stoff |0 (DE-588)4046811-2 |D s |
689 | 0 | 2 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Applied Mathematical Sciences |v 52 |w (DE-604)BV040244599 |9 52 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1120-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027855171 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2066763 |
---|---|
_version_ | 1820806705193156608 |
any_adam_object | |
author | Chipot, M. |
author_facet | Chipot, M. |
author_role | aut |
author_sort | Chipot, M. |
author_variant | m c mc |
building | Verbundindex |
bvnumber | BV042419754 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863692880 (DE-599)BVBBV042419754 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-1-4612-1120-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03331nam a2200505zcb4500</leader><controlfield tag="001">BV042419754</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200707 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1984 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461211204</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1120-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387960029</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-96002-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1120-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863692880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419754</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chipot, M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Variational Inequalities and Flow in Porous Media</subfield><subfield code="c">by M. Chipot</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 118p. 13 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">52</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">These notes are the contents of a one semester graduate course which taught at Brown University during the academic year 1981-1982. They are mainly concerned with regularity theory for obstacle problems, and with the dam problem, which, in the rectangular case, is one of the most interesting applications of Variational Inequalities with an obstacle. Very little background is needed to read these notes. The main results of functional analysis which are used here are recalled in the text. The goal of the two first chapters is to introduce the notion of Variational Inequality and give some applications from physical mathematics. The third chapter is concerned with a regularity theory for the obstacle problems. These problems have now invaded a large domain of applied mathematics including optimal control theory and mechanics, and a collection of regularity results available seems to be timely. Roughly speaking, for elliptic variational inequalities of second order we prove that the solution has as much regularity as the obstacle(s). We combine here the theory for one or two obstacles in a unified way, and one of our hopes is that the reader will enjoy the wide diversity of techniques used in this approach. The fourth chapter is concerned with the dam problem. This problem has been intensively studied during the past decade (see the books of Baiocchi-Capelo and Kinderlehrer-Stampacchia in the references). The relationship with Variational Inequalities has already been quoted above</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Poröser Stoff</subfield><subfield code="0">(DE-588)4046811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsungleichung</subfield><subfield code="0">(DE-588)4187420-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Variationsungleichung</subfield><subfield code="0">(DE-588)4187420-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Poröser Stoff</subfield><subfield code="0">(DE-588)4046811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">52</subfield><subfield code="w">(DE-604)BV040244599</subfield><subfield code="9">52</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1120-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855171</subfield></datafield></record></collection> |
id | DE-604.BV042419754 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T04:23:20Z |
institution | BVB |
isbn | 9781461211204 9780387960029 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855171 |
oclc_num | 863692880 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 118p. 13 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Springer New York |
record_format | marc |
series | Applied Mathematical Sciences |
series2 | Applied Mathematical Sciences |
spellingShingle | Chipot, M. Variational Inequalities and Flow in Porous Media Applied Mathematical Sciences Physics Theoretical, Mathematical and Computational Physics Strömungsmechanik (DE-588)4077970-1 gnd Poröser Stoff (DE-588)4046811-2 gnd Variationsungleichung (DE-588)4187420-1 gnd |
subject_GND | (DE-588)4077970-1 (DE-588)4046811-2 (DE-588)4187420-1 |
title | Variational Inequalities and Flow in Porous Media |
title_auth | Variational Inequalities and Flow in Porous Media |
title_exact_search | Variational Inequalities and Flow in Porous Media |
title_full | Variational Inequalities and Flow in Porous Media by M. Chipot |
title_fullStr | Variational Inequalities and Flow in Porous Media by M. Chipot |
title_full_unstemmed | Variational Inequalities and Flow in Porous Media by M. Chipot |
title_short | Variational Inequalities and Flow in Porous Media |
title_sort | variational inequalities and flow in porous media |
topic | Physics Theoretical, Mathematical and Computational Physics Strömungsmechanik (DE-588)4077970-1 gnd Poröser Stoff (DE-588)4046811-2 gnd Variationsungleichung (DE-588)4187420-1 gnd |
topic_facet | Physics Theoretical, Mathematical and Computational Physics Strömungsmechanik Poröser Stoff Variationsungleichung |
url | https://doi.org/10.1007/978-1-4612-1120-4 |
volume_link | (DE-604)BV040244599 |
work_keys_str_mv | AT chipotm variationalinequalitiesandflowinporousmedia |