Matrix Analysis

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bhatia, Rajendra (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: New York, NY Springer New York 1997
Schriftenreihe:Graduate Texts in Mathematics 169
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042419585
003 DE-604
005 20210216
007 cr|uuu---uuuuu
008 150317s1997 xx o|||| 00||| eng d
020 |a 9781461206538  |c Online  |9 978-1-4612-0653-8 
020 |a 9781461268574  |c Print  |9 978-1-4612-6857-4 
024 7 |a 10.1007/978-1-4612-0653-8  |2 doi 
035 |a (OCoLC)863759270 
035 |a (DE-599)BVBBV042419585 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 515  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Bhatia, Rajendra  |e Verfasser  |4 aut 
245 1 0 |a Matrix Analysis  |c by Rajendra Bhatia 
264 1 |a New York, NY  |b Springer New York  |c 1997 
300 |a 1 Online-Ressource (XI, 349 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Graduate Texts in Mathematics  |v 169  |x 0072-5285 
500 |a A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and graduate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathematical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to acquire hard tools and then learn how to use them delicately. The reader is expected to be very thoroughly familiar with basic linear algebra. The standard texts Finite-Dimensional Vector Spaces by P.R. 
650 4 |a Mathematics 
650 4 |a Global analysis (Mathematics) 
650 4 |a Numerical analysis 
650 4 |a Analysis 
650 4 |a Numerical Analysis 
650 4 |a Mathematik 
650 0 7 |a Matrizenanalysis  |0 (DE-588)4227735-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Operatortheorie  |0 (DE-588)4075665-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Matrizenanalysis  |0 (DE-588)4227735-8  |D s 
689 0 1 |a Operatortheorie  |0 (DE-588)4075665-8  |D s 
689 0 |8 1\p  |5 DE-604 
830 0 |a Graduate Texts in Mathematics  |v 169  |w (DE-604)BV035421258  |9 169 
856 4 0 |u https://doi.org/10.1007/978-1-4612-0653-8  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027855002 

Datensatz im Suchindex

DE-BY-TUM_katkey 2066594
_version_ 1820806704989732864
any_adam_object
author Bhatia, Rajendra
author_facet Bhatia, Rajendra
author_role aut
author_sort Bhatia, Rajendra
author_variant r b rb
building Verbundindex
bvnumber BV042419585
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)863759270
(DE-599)BVBBV042419585
dewey-full 515
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515
dewey-search 515
dewey-sort 3515
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-1-4612-0653-8
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03001nam a2200529zcb4500</leader><controlfield tag="001">BV042419585</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210216 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461206538</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0653-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461268574</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6857-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0653-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863759270</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419585</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bhatia, Rajendra</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrix Analysis</subfield><subfield code="c">by Rajendra Bhatia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 349 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">169</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and graduate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathematical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to acquire hard tools and then learn how to use them delicately. The reader is expected to be very thoroughly familiar with basic linear algebra. The standard texts Finite-Dimensional Vector Spaces by P.R.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizenanalysis</subfield><subfield code="0">(DE-588)4227735-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matrizenanalysis</subfield><subfield code="0">(DE-588)4227735-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">169</subfield><subfield code="w">(DE-604)BV035421258</subfield><subfield code="9">169</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0653-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855002</subfield></datafield></record></collection>
id DE-604.BV042419585
illustrated Not Illustrated
indexdate 2024-12-24T04:23:19Z
institution BVB
isbn 9781461206538
9781461268574
issn 0072-5285
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027855002
oclc_num 863759270
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XI, 349 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1997
publishDateSearch 1997
publishDateSort 1997
publisher Springer New York
record_format marc
series Graduate Texts in Mathematics
series2 Graduate Texts in Mathematics
spellingShingle Bhatia, Rajendra
Matrix Analysis
Graduate Texts in Mathematics
Mathematics
Global analysis (Mathematics)
Numerical analysis
Analysis
Numerical Analysis
Mathematik
Matrizenanalysis (DE-588)4227735-8 gnd
Operatortheorie (DE-588)4075665-8 gnd
subject_GND (DE-588)4227735-8
(DE-588)4075665-8
title Matrix Analysis
title_auth Matrix Analysis
title_exact_search Matrix Analysis
title_full Matrix Analysis by Rajendra Bhatia
title_fullStr Matrix Analysis by Rajendra Bhatia
title_full_unstemmed Matrix Analysis by Rajendra Bhatia
title_short Matrix Analysis
title_sort matrix analysis
topic Mathematics
Global analysis (Mathematics)
Numerical analysis
Analysis
Numerical Analysis
Mathematik
Matrizenanalysis (DE-588)4227735-8 gnd
Operatortheorie (DE-588)4075665-8 gnd
topic_facet Mathematics
Global analysis (Mathematics)
Numerical analysis
Analysis
Numerical Analysis
Mathematik
Matrizenanalysis
Operatortheorie
url https://doi.org/10.1007/978-1-4612-0653-8
volume_link (DE-604)BV035421258
work_keys_str_mv AT bhatiarajendra matrixanalysis