Foundations of Logic and Mathematics Applications to Computer Science and Cryptography

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Nievergelt, Yves (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Birkhäuser Boston 2002
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042419445
003 DE-604
005 20180115
007 cr|uuu---uuuuu
008 150317s2002 xx o|||| 00||| eng d
020 |a 9781461201250  |c Online  |9 978-1-4612-0125-0 
020 |a 9781461266235  |c Print  |9 978-1-4612-6623-5 
024 7 |a 10.1007/978-1-4612-0125-0  |2 doi 
035 |a (OCoLC)879621362 
035 |a (DE-599)BVBBV042419445 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 511.3  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Nievergelt, Yves  |e Verfasser  |4 aut 
245 1 0 |a Foundations of Logic and Mathematics  |b Applications to Computer Science and Cryptography  |c by Yves Nievergelt 
264 1 |a Boston, MA  |b Birkhäuser Boston  |c 2002 
300 |a 1 Online-Ressource (XVI, 415 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a This modern introduction to the foundations of logic, mathematics, and computer science answers frequent questions that mysteriously remain mostly unanswered in other texts: - Why is the truth table for the logical implication so unintuitive? - Why are there no recipes to design proofs? - Where do these numerous mathematical rules come from? - What are the applications of formal logic and abstract mathematics? - What issues in logic, mathematics, and computer science still remain unresolved? Answers to such questions must necessarily present both theory and significant applications, which explains the length of the book. The text first shows how real life provides some guidance for the selection of axioms for the basis of a logical system, for instance, Boolean, classical, intuitionistic, or minimalistic logic. From such axioms, the text then derives detailed explanations of the elements of modem logic and mathematics: set theory, arithmetic, number theory, combinatorics, probability, and graph theory, with applications to computer science. The motivation for such detail, and for the organization of the material, lies in a continuous thread from logic and mathematics to their uses in everyday life 
650 4 |a Mathematics 
650 4 |a Data encryption (Computer science) 
650 4 |a Logic, Symbolic and mathematical 
650 4 |a Number theory 
650 4 |a Mathematical Logic and Foundations 
650 4 |a Data Encryption 
650 4 |a Applications of Mathematics 
650 4 |a Number Theory 
650 4 |a Mathematik 
650 0 7 |a Mathematische Logik  |0 (DE-588)4037951-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Mathematische Logik  |0 (DE-588)4037951-6  |D s 
689 0 |8 1\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-1-4612-0125-0  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027854862 

Datensatz im Suchindex

DE-BY-TUM_katkey 2066454
_version_ 1820893589546205184
any_adam_object
author Nievergelt, Yves
author_facet Nievergelt, Yves
author_role aut
author_sort Nievergelt, Yves
author_variant y n yn
building Verbundindex
bvnumber BV042419445
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)879621362
(DE-599)BVBBV042419445
dewey-full 511.3
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 511 - General principles of mathematics
dewey-raw 511.3
dewey-search 511.3
dewey-sort 3511.3
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-1-4612-0125-0
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02963nam a2200517zc 4500</leader><controlfield tag="001">BV042419445</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180115 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461201250</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0125-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461266235</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6623-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0125-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879621362</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419445</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nievergelt, Yves</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Foundations of Logic and Mathematics</subfield><subfield code="b">Applications to Computer Science and Cryptography</subfield><subfield code="c">by Yves Nievergelt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 415 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This modern introduction to the foundations of logic, mathematics, and computer science answers frequent questions that mysteriously remain mostly unanswered in other texts: - Why is the truth table for the logical implication so unintuitive? - Why are there no recipes to design proofs? - Where do these numerous mathematical rules come from? - What are the applications of formal logic and abstract mathematics? - What issues in logic, mathematics, and computer science still remain unresolved? Answers to such questions must necessarily present both theory and significant applications, which explains the length of the book. The text first shows how real life provides some guidance for the selection of axioms for the basis of a logical system, for instance, Boolean, classical, intuitionistic, or minimalistic logic. From such axioms, the text then derives detailed explanations of the elements of modem logic and mathematics: set theory, arithmetic, number theory, combinatorics, probability, and graph theory, with applications to computer science. The motivation for such detail, and for the organization of the material, lies in a continuous thread from logic and mathematics to their uses in everyday life</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data encryption (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Encryption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0125-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854862</subfield></datafield></record></collection>
id DE-604.BV042419445
illustrated Not Illustrated
indexdate 2024-12-24T04:23:19Z
institution BVB
isbn 9781461201250
9781461266235
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027854862
oclc_num 879621362
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XVI, 415 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 2002
publishDateSearch 2002
publishDateSort 2002
publisher Birkhäuser Boston
record_format marc
spellingShingle Nievergelt, Yves
Foundations of Logic and Mathematics Applications to Computer Science and Cryptography
Mathematics
Data encryption (Computer science)
Logic, Symbolic and mathematical
Number theory
Mathematical Logic and Foundations
Data Encryption
Applications of Mathematics
Number Theory
Mathematik
Mathematische Logik (DE-588)4037951-6 gnd
subject_GND (DE-588)4037951-6
title Foundations of Logic and Mathematics Applications to Computer Science and Cryptography
title_auth Foundations of Logic and Mathematics Applications to Computer Science and Cryptography
title_exact_search Foundations of Logic and Mathematics Applications to Computer Science and Cryptography
title_full Foundations of Logic and Mathematics Applications to Computer Science and Cryptography by Yves Nievergelt
title_fullStr Foundations of Logic and Mathematics Applications to Computer Science and Cryptography by Yves Nievergelt
title_full_unstemmed Foundations of Logic and Mathematics Applications to Computer Science and Cryptography by Yves Nievergelt
title_short Foundations of Logic and Mathematics
title_sort foundations of logic and mathematics applications to computer science and cryptography
title_sub Applications to Computer Science and Cryptography
topic Mathematics
Data encryption (Computer science)
Logic, Symbolic and mathematical
Number theory
Mathematical Logic and Foundations
Data Encryption
Applications of Mathematics
Number Theory
Mathematik
Mathematische Logik (DE-588)4037951-6 gnd
topic_facet Mathematics
Data encryption (Computer science)
Logic, Symbolic and mathematical
Number theory
Mathematical Logic and Foundations
Data Encryption
Applications of Mathematics
Number Theory
Mathematik
Mathematische Logik
url https://doi.org/10.1007/978-1-4612-0125-0
work_keys_str_mv AT nievergeltyves foundationsoflogicandmathematicsapplicationstocomputerscienceandcryptography