Foundations of Classical Electrodynamics Charge, Flux, and Metric
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2003
|
Schriftenreihe: | Progress in Mathematical Physics
33 |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419418 | ||
003 | DE-604 | ||
005 | 20150626 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 xx o|||| 00||| eng d | ||
020 | |a 9781461200512 |c Online |9 978-1-4612-0051-2 | ||
020 | |a 9781461265900 |c Print |9 978-1-4612-6590-0 | ||
024 | 7 | |a 10.1007/978-1-4612-0051-2 |2 doi | |
035 | |a (OCoLC)863715194 | ||
035 | |a (DE-599)BVBBV042419418 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a PHY 300f |2 stub | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Hehl, Friedrich W. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Foundations of Classical Electrodynamics |b Charge, Flux, and Metric |c by Friedrich W. Hehl, Yuri N. Obukhov |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2003 | |
300 | |a 1 Online-Ressource (XV, 113 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematical Physics |v 33 | |
500 | |a This book presents a fresh, original exposition of the foundations of classical electrodynamics in the tradition of the so-called metric-free approach. The fundamental structure of classical electrodynamics is described in the form of six axioms: (1) electric charge conservation, (2) existence of the Lorentz force, (3) magnetic flux conservation, (4) localization of electromagnetic energy-momentum, (5) existence of an electromagnetic spacetime relation, and (6) splitting of the electric current into material and external pieces. The first four axioms require an arbitrary 4-dimensional differentiable manifold. The fifth axiom characterizes spacetime as the environment in which the electromagnetic field propagates — a research topic of considerable interest — and in which the metric tensor of spacetime makes its appearance, thus coupling electromagnetism and gravitation. Repeated emphasis is placed on interweaving the mathematical definitions of physical notions and the actual physical measurement procedures. The tool for formulating the theory is the calculus of exterior differential forms, which is explained in sufficient detail, along with the corresponding computer algebra programs. Prerequisites for the reader include a knowledge of elementary electrodynamics (with Maxwell's equations), linear algebra and elementary vector analysis; some knowledge of differential geometry would help. Foundations of Classical Electrodynamics unfolds systematically at a level suitable for graduate students and researchers in mathematics, physics, and electrical engineering | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektrodynamik |0 (DE-588)4014251-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektrodynamik |0 (DE-588)4014251-6 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Obukhov, Yuri N. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0051-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027854835 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2066427 |
---|---|
_version_ | 1820813459353239552 |
any_adam_object | |
author | Hehl, Friedrich W. |
author_facet | Hehl, Friedrich W. |
author_role | aut |
author_sort | Hehl, Friedrich W. |
author_variant | f w h fw fwh |
building | Verbundindex |
bvnumber | BV042419418 |
classification_tum | PHY 300f MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863715194 (DE-599)BVBBV042419418 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-1-4612-0051-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03431nam a2200529zcb4500</leader><controlfield tag="001">BV042419418</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150626 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461200512</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0051-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461265900</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6590-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0051-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863715194</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419418</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 300f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hehl, Friedrich W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Foundations of Classical Electrodynamics</subfield><subfield code="b">Charge, Flux, and Metric</subfield><subfield code="c">by Friedrich W. Hehl, Yuri N. Obukhov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 113 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematical Physics</subfield><subfield code="v">33</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents a fresh, original exposition of the foundations of classical electrodynamics in the tradition of the so-called metric-free approach. The fundamental structure of classical electrodynamics is described in the form of six axioms: (1) electric charge conservation, (2) existence of the Lorentz force, (3) magnetic flux conservation, (4) localization of electromagnetic energy-momentum, (5) existence of an electromagnetic spacetime relation, and (6) splitting of the electric current into material and external pieces. The first four axioms require an arbitrary 4-dimensional differentiable manifold. The fifth axiom characterizes spacetime as the environment in which the electromagnetic field propagates — a research topic of considerable interest — and in which the metric tensor of spacetime makes its appearance, thus coupling electromagnetism and gravitation. Repeated emphasis is placed on interweaving the mathematical definitions of physical notions and the actual physical measurement procedures. The tool for formulating the theory is the calculus of exterior differential forms, which is explained in sufficient detail, along with the corresponding computer algebra programs. Prerequisites for the reader include a knowledge of elementary electrodynamics (with Maxwell's equations), linear algebra and elementary vector analysis; some knowledge of differential geometry would help. Foundations of Classical Electrodynamics unfolds systematically at a level suitable for graduate students and researchers in mathematics, physics, and electrical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrodynamik</subfield><subfield code="0">(DE-588)4014251-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektrodynamik</subfield><subfield code="0">(DE-588)4014251-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Obukhov, Yuri N.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0051-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854835</subfield></datafield></record></collection> |
id | DE-604.BV042419418 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T04:23:19Z |
institution | BVB |
isbn | 9781461200512 9781461265900 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854835 |
oclc_num | 863715194 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 113 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Mathematical Physics |
spellingShingle | Hehl, Friedrich W. Foundations of Classical Electrodynamics Charge, Flux, and Metric Mathematics Cell aggregation / Mathematics Applications of Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Theoretical, Mathematical and Computational Physics Mathematik Mathematische Physik (DE-588)4037952-8 gnd Elektrodynamik (DE-588)4014251-6 gnd |
subject_GND | (DE-588)4037952-8 (DE-588)4014251-6 |
title | Foundations of Classical Electrodynamics Charge, Flux, and Metric |
title_auth | Foundations of Classical Electrodynamics Charge, Flux, and Metric |
title_exact_search | Foundations of Classical Electrodynamics Charge, Flux, and Metric |
title_full | Foundations of Classical Electrodynamics Charge, Flux, and Metric by Friedrich W. Hehl, Yuri N. Obukhov |
title_fullStr | Foundations of Classical Electrodynamics Charge, Flux, and Metric by Friedrich W. Hehl, Yuri N. Obukhov |
title_full_unstemmed | Foundations of Classical Electrodynamics Charge, Flux, and Metric by Friedrich W. Hehl, Yuri N. Obukhov |
title_short | Foundations of Classical Electrodynamics |
title_sort | foundations of classical electrodynamics charge flux and metric |
title_sub | Charge, Flux, and Metric |
topic | Mathematics Cell aggregation / Mathematics Applications of Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Theoretical, Mathematical and Computational Physics Mathematik Mathematische Physik (DE-588)4037952-8 gnd Elektrodynamik (DE-588)4014251-6 gnd |
topic_facet | Mathematics Cell aggregation / Mathematics Applications of Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Theoretical, Mathematical and Computational Physics Mathematik Mathematische Physik Elektrodynamik |
url | https://doi.org/10.1007/978-1-4612-0051-2 |
work_keys_str_mv | AT hehlfriedrichw foundationsofclassicalelectrodynamicschargefluxandmetric AT obukhovyurin foundationsofclassicalelectrodynamicschargefluxandmetric |