Elementary Number Theory

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Jones, Gareth A. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: London Springer London 1998
Schriftenreihe:Springer Undergraduate Mathematics Series
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042419364
003 DE-604
005 20171219
007 cr|uuu---uuuuu
008 150317s1998 xx o|||| 00||| eng d
020 |a 9781447106135  |c Online  |9 978-1-4471-0613-5 
020 |a 9783540761976  |c Print  |9 978-3-540-76197-6 
024 7 |a 10.1007/978-1-4471-0613-5  |2 doi 
035 |a (OCoLC)1184376434 
035 |a (DE-599)BVBBV042419364 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634  |a DE-739 
082 0 |a 512.7  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Jones, Gareth A.  |e Verfasser  |4 aut 
245 1 0 |a Elementary Number Theory  |c by Gareth A. Jones, J. Mary Jones 
264 1 |a London  |b Springer London  |c 1998 
300 |a 1 Online-Ressource (XIV, 306p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Springer Undergraduate Mathematics Series  |x 1615-2085 
500 |a Our intention in writing this book is to give an elementary introduction to number theory which does not demand a great deal of mathematical background or maturity from the reader, and which can be read and understood with no extra assistance. Our first three chapters are based almost entirely on A-level mathematics, while the next five require little else beyond some elementary group theory. It is only in the last three chapters, where we treat more advanced topics, including recent developments, that we require greater mathematical background; here we use some basic ideas which students would expect to meet in the first year or so of a typical undergraduate course in mathematics. Throughout the book, we have attempted to explain our arguments as fully and as clearly as possible, with plenty of worked examples and with outline solutions for all the exercises. There are several good reasons for choosing number theory as a subject. It has a long and interesting history, ranging from the earliest recorded times to the present day (see Chapter 11, for instance, on Fermat's Last Theorem), and its problems have attracted many of the greatest mathematicians; consequently the study of number theory is an excellent introduction to the development and achievements of mathematics (and, indeed, some of its failures). In particular, the explicit nature of many of its problems, concerning basic properties of integers, makes number theory a particularly suitable subject in which to present modern mathematics in elementary terms 
650 4 |a Mathematics 
650 4 |a Number theory 
650 4 |a Number Theory 
650 4 |a Mathematik 
650 0 7 |a Zahlentheorie  |0 (DE-588)4067277-3  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)4151278-9  |a Einführung  |2 gnd-content 
655 7 |8 2\p  |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Zahlentheorie  |0 (DE-588)4067277-3  |D s 
689 0 |8 3\p  |5 DE-604 
700 1 |a Jones, J. Mary  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-1-4471-0613-5  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027854781 

Datensatz im Suchindex

DE-BY-TUM_katkey 2066373
_version_ 1820813452469338112
any_adam_object
author Jones, Gareth A.
author_facet Jones, Gareth A.
author_role aut
author_sort Jones, Gareth A.
author_variant g a j ga gaj
building Verbundindex
bvnumber BV042419364
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1184376434
(DE-599)BVBBV042419364
dewey-full 512.7
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.7
dewey-search 512.7
dewey-sort 3512.7
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-1-4471-0613-5
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03414nam a2200529zc 4500</leader><controlfield tag="001">BV042419364</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171219 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447106135</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4471-0613-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540761976</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-76197-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4471-0613-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184376434</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419364</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jones, Gareth A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elementary Number Theory</subfield><subfield code="c">by Gareth A. Jones, J. Mary Jones</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 306p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Undergraduate Mathematics Series</subfield><subfield code="x">1615-2085</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Our intention in writing this book is to give an elementary introduction to number theory which does not demand a great deal of mathematical background or maturity from the reader, and which can be read and understood with no extra assistance. Our first three chapters are based almost entirely on A-level mathematics, while the next five require little else beyond some elementary group theory. It is only in the last three chapters, where we treat more advanced topics, including recent developments, that we require greater mathematical background; here we use some basic ideas which students would expect to meet in the first year or so of a typical undergraduate course in mathematics. Throughout the book, we have attempted to explain our arguments as fully and as clearly as possible, with plenty of worked examples and with outline solutions for all the exercises. There are several good reasons for choosing number theory as a subject. It has a long and interesting history, ranging from the earliest recorded times to the present day (see Chapter 11, for instance, on Fermat's Last Theorem), and its problems have attracted many of the greatest mathematicians; consequently the study of number theory is an excellent introduction to the development and achievements of mathematics (and, indeed, some of its failures). In particular, the explicit nature of many of its problems, concerning basic properties of integers, makes number theory a particularly suitable subject in which to present modern mathematics in elementary terms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jones, J. Mary</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4471-0613-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854781</subfield></datafield></record></collection>
genre 1\p (DE-588)4151278-9 Einführung gnd-content
2\p (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Einführung
Lehrbuch
id DE-604.BV042419364
illustrated Not Illustrated
indexdate 2024-12-24T04:23:19Z
institution BVB
isbn 9781447106135
9783540761976
issn 1615-2085
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027854781
oclc_num 1184376434
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
DE-739
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
DE-739
physical 1 Online-Ressource (XIV, 306p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher Springer London
record_format marc
series2 Springer Undergraduate Mathematics Series
spellingShingle Jones, Gareth A.
Elementary Number Theory
Mathematics
Number theory
Number Theory
Mathematik
Zahlentheorie (DE-588)4067277-3 gnd
subject_GND (DE-588)4067277-3
(DE-588)4151278-9
(DE-588)4123623-3
title Elementary Number Theory
title_auth Elementary Number Theory
title_exact_search Elementary Number Theory
title_full Elementary Number Theory by Gareth A. Jones, J. Mary Jones
title_fullStr Elementary Number Theory by Gareth A. Jones, J. Mary Jones
title_full_unstemmed Elementary Number Theory by Gareth A. Jones, J. Mary Jones
title_short Elementary Number Theory
title_sort elementary number theory
topic Mathematics
Number theory
Number Theory
Mathematik
Zahlentheorie (DE-588)4067277-3 gnd
topic_facet Mathematics
Number theory
Number Theory
Mathematik
Zahlentheorie
Einführung
Lehrbuch
url https://doi.org/10.1007/978-1-4471-0613-5
work_keys_str_mv AT jonesgaretha elementarynumbertheory
AT jonesjmary elementarynumbertheory