Algebraic K-Theory

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Srinivas, V. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Birkhäuser Boston 1996
Ausgabe:Second Edition
Schriftenreihe:Modern Birkhauser Classics
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042419154
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1996 xx o|||| 00||| eng d
020 |a 9780817647391  |c Online  |9 978-0-8176-4739-1 
020 |a 9780817647360  |c Print  |9 978-0-8176-4736-0 
024 7 |a 10.1007/978-0-8176-4739-1  |2 doi 
035 |a (OCoLC)879625131 
035 |a (DE-599)BVBBV042419154 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 512.66  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Srinivas, V.  |e Verfasser  |4 aut 
245 1 0 |a Algebraic K-Theory  |c by V. Srinivas 
250 |a Second Edition 
264 1 |a Boston, MA  |b Birkhäuser Boston  |c 1996 
300 |a 1 Online-Ressource (XVII, 341 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Modern Birkhauser Classics  |x 2197-1803 
500 |a Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application is also given to modules of finite length and finite projective dimension over the local ring of a normal surface singularity. These results lead the reader to some interesting conclusions regarding the Chow group of varieties. "It is a pleasure to read this mathematically beautiful book..." ---WW.J. Julsbergen, Mathematics Abstracts "The book does an admirable job of presenting the details of Quillen's work..." ---Mathematical Reviews 
650 4 |a Mathematics 
650 4 |a Geometry, algebraic 
650 4 |a K-theory 
650 4 |a Topology 
650 4 |a Algebraic topology 
650 4 |a K-Theory 
650 4 |a Algebraic Geometry 
650 4 |a Algebraic Topology 
650 4 |a Mathematik 
650 0 7 |a Algebra  |0 (DE-588)4001156-2  |2 gnd  |9 rswk-swf 
650 0 7 |a K-Theorie  |0 (DE-588)4033335-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraische K-Theorie  |0 (DE-588)4141839-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Algebraische K-Theorie  |0 (DE-588)4141839-6  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a K-Theorie  |0 (DE-588)4033335-8  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Algebra  |0 (DE-588)4001156-2  |D s 
689 2 |8 3\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-0-8176-4739-1  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027854571 

Datensatz im Suchindex

DE-BY-TUM_katkey 2066164
_version_ 1820860400628924416
any_adam_object
author Srinivas, V.
author_facet Srinivas, V.
author_role aut
author_sort Srinivas, V.
author_variant v s vs
building Verbundindex
bvnumber BV042419154
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)879625131
(DE-599)BVBBV042419154
dewey-full 512.66
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.66
dewey-search 512.66
dewey-sort 3512.66
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-0-8176-4739-1
edition Second Edition
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03595nam a2200637zc 4500</leader><controlfield tag="001">BV042419154</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817647391</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-8176-4739-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817647360</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-4736-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-8176-4739-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879625131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419154</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.66</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Srinivas, V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic K-Theory</subfield><subfield code="c">by V. Srinivas</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 341 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Modern Birkhauser Classics</subfield><subfield code="x">2197-1803</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application is also given to modules of finite length and finite projective dimension over the local ring of a normal surface singularity. These results lead the reader to some interesting conclusions regarding the Chow group of varieties. "It is a pleasure to read this mathematically beautiful book..." ---WW.J. Julsbergen, Mathematics Abstracts "The book does an admirable job of presenting the details of Quillen's work..." ---Mathematical Reviews</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">K-Theorie</subfield><subfield code="0">(DE-588)4033335-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische K-Theorie</subfield><subfield code="0">(DE-588)4141839-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische K-Theorie</subfield><subfield code="0">(DE-588)4141839-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">K-Theorie</subfield><subfield code="0">(DE-588)4033335-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-8176-4739-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854571</subfield></datafield></record></collection>
id DE-604.BV042419154
illustrated Not Illustrated
indexdate 2024-12-24T04:23:18Z
institution BVB
isbn 9780817647391
9780817647360
issn 2197-1803
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027854571
oclc_num 879625131
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XVII, 341 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1996
publishDateSearch 1996
publishDateSort 1996
publisher Birkhäuser Boston
record_format marc
series2 Modern Birkhauser Classics
spellingShingle Srinivas, V.
Algebraic K-Theory
Mathematics
Geometry, algebraic
K-theory
Topology
Algebraic topology
K-Theory
Algebraic Geometry
Algebraic Topology
Mathematik
Algebra (DE-588)4001156-2 gnd
K-Theorie (DE-588)4033335-8 gnd
Algebraische K-Theorie (DE-588)4141839-6 gnd
subject_GND (DE-588)4001156-2
(DE-588)4033335-8
(DE-588)4141839-6
title Algebraic K-Theory
title_auth Algebraic K-Theory
title_exact_search Algebraic K-Theory
title_full Algebraic K-Theory by V. Srinivas
title_fullStr Algebraic K-Theory by V. Srinivas
title_full_unstemmed Algebraic K-Theory by V. Srinivas
title_short Algebraic K-Theory
title_sort algebraic k theory
topic Mathematics
Geometry, algebraic
K-theory
Topology
Algebraic topology
K-Theory
Algebraic Geometry
Algebraic Topology
Mathematik
Algebra (DE-588)4001156-2 gnd
K-Theorie (DE-588)4033335-8 gnd
Algebraische K-Theorie (DE-588)4141839-6 gnd
topic_facet Mathematics
Geometry, algebraic
K-theory
Topology
Algebraic topology
K-Theory
Algebraic Geometry
Algebraic Topology
Mathematik
Algebra
K-Theorie
Algebraische K-Theorie
url https://doi.org/10.1007/978-0-8176-4739-1
work_keys_str_mv AT srinivasv algebraicktheory