Diffusions and Elliptic Operators
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1998
|
Schriftenreihe: | Probability and its Applications, A Series of the Applied Probability Trust
|
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419042 | ||
003 | DE-604 | ||
005 | 20171019 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 xx o|||| 00||| eng d | ||
020 | |a 9780387226040 |c Online |9 978-0-387-22604-0 | ||
020 | |a 9780387983158 |c Print |9 978-0-387-98315-8 | ||
024 | 7 | |a 10.1007/b97611 |2 doi | |
035 | |a (OCoLC)704424515 | ||
035 | |a (DE-599)BVBBV042419042 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bass, Richard F. |d 1951- |e Verfasser |0 (DE-588)1023549581 |4 aut | |
245 | 1 | 0 | |a Diffusions and Elliptic Operators |c by Richard F. Bass |
264 | 1 | |a New York, NY |b Springer New York |c 1998 | |
300 | |a 1 Online-Ressource (XIV, 232 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Probability and its Applications, A Series of the Applied Probability Trust |x 1431-7028 | |
500 | |a The interplay of probability theory and partial differential equations forms a fascinating part of mathematics. Among the subjects it has inspired are the martingale problems of Stroock and Varadhan, the Harnack inequality of Krylov and Safonov, the theory of symmetric diffusion processes, and the Malliavin calculus. When I first made an outline for my previous book Probabilistic Techniques in Analysis, I planned to devote a chapter to these topics. I soon realized that a single chapter would not do the subject justice, and the current book is the result. The first chapter provides the probabilistic machine needed to drive the subject, namely, stochastic differential equations. We consider existence, uniqueness, and smoothness of solutions and stochastic differential equations with reflection. The second chapter is the heart of the subject. We show how many partial differential equations can be solved by simple probabilistic expressions. The Dirichlet problem, the Cauchy problem, the Neumann problem, the oblique derivative problem, Poisson's equation, and Schrödinger's equation all have solutions that are given by appropriate probabilistic expressions. Green functions and fundamental solutions also have simple probabilistic representations. If an operator has smooth coefficients, then equations with these operators will have smooth solutions. This theory is discussed in Chapter III. The chapter is largely analytic, but probability allows some simplification in the arguments. Chapter IV considers one-dimensional diffusions and the corresponding second-order ordinary differential equations. Every one-dimensional diffusion viii PREFACE can be derived from Brownian motion by changes of time and scale | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Elliptischer Differentialoperator |0 (DE-588)4140057-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diffusion |0 (DE-588)4012277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diffusionsprozess |0 (DE-588)4274463-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Diffusionsprozess |0 (DE-588)4274463-5 |D s |
689 | 0 | 1 | |a Elliptischer Differentialoperator |0 (DE-588)4140057-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Diffusion |0 (DE-588)4012277-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/b97611 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027854459 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2066052 |
---|---|
_version_ | 1820860341210316800 |
any_adam_object | |
author | Bass, Richard F. 1951- |
author_GND | (DE-588)1023549581 |
author_facet | Bass, Richard F. 1951- |
author_role | aut |
author_sort | Bass, Richard F. 1951- |
author_variant | r f b rf rfb |
building | Verbundindex |
bvnumber | BV042419042 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)704424515 (DE-599)BVBBV042419042 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b97611 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04070nam a2200613zc 4500</leader><controlfield tag="001">BV042419042</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171019 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387226040</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-22604-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387983158</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-98315-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b97611</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704424515</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419042</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bass, Richard F.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1023549581</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diffusions and Elliptic Operators</subfield><subfield code="c">by Richard F. Bass</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 232 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Probability and its Applications, A Series of the Applied Probability Trust</subfield><subfield code="x">1431-7028</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The interplay of probability theory and partial differential equations forms a fascinating part of mathematics. Among the subjects it has inspired are the martingale problems of Stroock and Varadhan, the Harnack inequality of Krylov and Safonov, the theory of symmetric diffusion processes, and the Malliavin calculus. When I first made an outline for my previous book Probabilistic Techniques in Analysis, I planned to devote a chapter to these topics. I soon realized that a single chapter would not do the subject justice, and the current book is the result. The first chapter provides the probabilistic machine needed to drive the subject, namely, stochastic differential equations. We consider existence, uniqueness, and smoothness of solutions and stochastic differential equations with reflection. The second chapter is the heart of the subject. We show how many partial differential equations can be solved by simple probabilistic expressions. The Dirichlet problem, the Cauchy problem, the Neumann problem, the oblique derivative problem, Poisson's equation, and Schrödinger's equation all have solutions that are given by appropriate probabilistic expressions. Green functions and fundamental solutions also have simple probabilistic representations. If an operator has smooth coefficients, then equations with these operators will have smooth solutions. This theory is discussed in Chapter III. The chapter is largely analytic, but probability allows some simplification in the arguments. Chapter IV considers one-dimensional diffusions and the corresponding second-order ordinary differential equations. Every one-dimensional diffusion viii PREFACE can be derived from Brownian motion by changes of time and scale</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptischer Differentialoperator</subfield><subfield code="0">(DE-588)4140057-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diffusion</subfield><subfield code="0">(DE-588)4012277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diffusionsprozess</subfield><subfield code="0">(DE-588)4274463-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diffusionsprozess</subfield><subfield code="0">(DE-588)4274463-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elliptischer Differentialoperator</subfield><subfield code="0">(DE-588)4140057-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Diffusion</subfield><subfield code="0">(DE-588)4012277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b97611</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854459</subfield></datafield></record></collection> |
id | DE-604.BV042419042 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T04:23:18Z |
institution | BVB |
isbn | 9780387226040 9780387983158 |
issn | 1431-7028 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854459 |
oclc_num | 704424515 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 232 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer New York |
record_format | marc |
series2 | Probability and its Applications, A Series of the Applied Probability Trust |
spellingShingle | Bass, Richard F. 1951- Diffusions and Elliptic Operators Mathematics Global analysis (Mathematics) Distribution (Probability theory) Probability Theory and Stochastic Processes Analysis Mathematik Elliptischer Differentialoperator (DE-588)4140057-4 gnd Diffusion (DE-588)4012277-3 gnd Diffusionsprozess (DE-588)4274463-5 gnd Stochastische Differentialgleichung (DE-588)4057621-8 gnd |
subject_GND | (DE-588)4140057-4 (DE-588)4012277-3 (DE-588)4274463-5 (DE-588)4057621-8 |
title | Diffusions and Elliptic Operators |
title_auth | Diffusions and Elliptic Operators |
title_exact_search | Diffusions and Elliptic Operators |
title_full | Diffusions and Elliptic Operators by Richard F. Bass |
title_fullStr | Diffusions and Elliptic Operators by Richard F. Bass |
title_full_unstemmed | Diffusions and Elliptic Operators by Richard F. Bass |
title_short | Diffusions and Elliptic Operators |
title_sort | diffusions and elliptic operators |
topic | Mathematics Global analysis (Mathematics) Distribution (Probability theory) Probability Theory and Stochastic Processes Analysis Mathematik Elliptischer Differentialoperator (DE-588)4140057-4 gnd Diffusion (DE-588)4012277-3 gnd Diffusionsprozess (DE-588)4274463-5 gnd Stochastische Differentialgleichung (DE-588)4057621-8 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Distribution (Probability theory) Probability Theory and Stochastic Processes Analysis Mathematik Elliptischer Differentialoperator Diffusion Diffusionsprozess Stochastische Differentialgleichung |
url | https://doi.org/10.1007/b97611 |
work_keys_str_mv | AT bassrichardf diffusionsandellipticoperators |