Diffusions and Elliptic Operators

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bass, Richard F. 1951- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: New York, NY Springer New York 1998
Schriftenreihe:Probability and its Applications, A Series of the Applied Probability Trust
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042419042
003 DE-604
005 20171019
007 cr|uuu---uuuuu
008 150317s1998 xx o|||| 00||| eng d
020 |a 9780387226040  |c Online  |9 978-0-387-22604-0 
020 |a 9780387983158  |c Print  |9 978-0-387-98315-8 
024 7 |a 10.1007/b97611  |2 doi 
035 |a (OCoLC)704424515 
035 |a (DE-599)BVBBV042419042 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 519.2  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Bass, Richard F.  |d 1951-  |e Verfasser  |0 (DE-588)1023549581  |4 aut 
245 1 0 |a Diffusions and Elliptic Operators  |c by Richard F. Bass 
264 1 |a New York, NY  |b Springer New York  |c 1998 
300 |a 1 Online-Ressource (XIV, 232 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Probability and its Applications, A Series of the Applied Probability Trust  |x 1431-7028 
500 |a The interplay of probability theory and partial differential equations forms a fascinating part of mathematics. Among the subjects it has inspired are the martingale problems of Stroock and Varadhan, the Harnack inequality of Krylov and Safonov, the theory of symmetric diffusion processes, and the Malliavin calculus. When I first made an outline for my previous book Probabilistic Techniques in Analysis, I planned to devote a chapter to these topics. I soon realized that a single chapter would not do the subject justice, and the current book is the result. The first chapter provides the probabilistic machine needed to drive the subject, namely, stochastic differential equations. We consider existence, uniqueness, and smoothness of solutions and stochastic differential equations with reflection. The second chapter is the heart of the subject. We show how many partial differential equations can be solved by simple probabilistic expressions. The Dirichlet problem, the Cauchy problem, the Neumann problem, the oblique derivative problem, Poisson's equation, and Schrödinger's equation all have solutions that are given by appropriate probabilistic expressions. Green functions and fundamental solutions also have simple probabilistic representations. If an operator has smooth coefficients, then equations with these operators will have smooth solutions. This theory is discussed in Chapter III. The chapter is largely analytic, but probability allows some simplification in the arguments. Chapter IV considers one-dimensional diffusions and the corresponding second-order ordinary differential equations. Every one-dimensional diffusion viii PREFACE can be derived from Brownian motion by changes of time and scale 
650 4 |a Mathematics 
650 4 |a Global analysis (Mathematics) 
650 4 |a Distribution (Probability theory) 
650 4 |a Probability Theory and Stochastic Processes 
650 4 |a Analysis 
650 4 |a Mathematik 
650 0 7 |a Elliptischer Differentialoperator  |0 (DE-588)4140057-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Diffusion  |0 (DE-588)4012277-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Diffusionsprozess  |0 (DE-588)4274463-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Stochastische Differentialgleichung  |0 (DE-588)4057621-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Diffusionsprozess  |0 (DE-588)4274463-5  |D s 
689 0 1 |a Elliptischer Differentialoperator  |0 (DE-588)4140057-4  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Stochastische Differentialgleichung  |0 (DE-588)4057621-8  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Diffusion  |0 (DE-588)4012277-3  |D s 
689 2 |8 3\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/b97611  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027854459 

Datensatz im Suchindex

DE-BY-TUM_katkey 2066052
_version_ 1820860341210316800
any_adam_object
author Bass, Richard F. 1951-
author_GND (DE-588)1023549581
author_facet Bass, Richard F. 1951-
author_role aut
author_sort Bass, Richard F. 1951-
author_variant r f b rf rfb
building Verbundindex
bvnumber BV042419042
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)704424515
(DE-599)BVBBV042419042
dewey-full 519.2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.2
dewey-search 519.2
dewey-sort 3519.2
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/b97611
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04070nam a2200613zc 4500</leader><controlfield tag="001">BV042419042</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171019 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387226040</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-22604-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387983158</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-98315-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b97611</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704424515</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419042</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bass, Richard F.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1023549581</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diffusions and Elliptic Operators</subfield><subfield code="c">by Richard F. Bass</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 232 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Probability and its Applications, A Series of the Applied Probability Trust</subfield><subfield code="x">1431-7028</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The interplay of probability theory and partial differential equations forms a fascinating part of mathematics. Among the subjects it has inspired are the martingale problems of Stroock and Varadhan, the Harnack inequality of Krylov and Safonov, the theory of symmetric diffusion processes, and the Malliavin calculus. When I first made an outline for my previous book Probabilistic Techniques in Analysis, I planned to devote a chapter to these topics. I soon realized that a single chapter would not do the subject justice, and the current book is the result. The first chapter provides the probabilistic machine needed to drive the subject, namely, stochastic differential equations. We consider existence, uniqueness, and smoothness of solutions and stochastic differential equations with reflection. The second chapter is the heart of the subject. We show how many partial differential equations can be solved by simple probabilistic expressions. The Dirichlet problem, the Cauchy problem, the Neumann problem, the oblique derivative problem, Poisson's equation, and Schrödinger's equation all have solutions that are given by appropriate probabilistic expressions. Green functions and fundamental solutions also have simple probabilistic representations. If an operator has smooth coefficients, then equations with these operators will have smooth solutions. This theory is discussed in Chapter III. The chapter is largely analytic, but probability allows some simplification in the arguments. Chapter IV considers one-dimensional diffusions and the corresponding second-order ordinary differential equations. Every one-dimensional diffusion viii PREFACE can be derived from Brownian motion by changes of time and scale</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptischer Differentialoperator</subfield><subfield code="0">(DE-588)4140057-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diffusion</subfield><subfield code="0">(DE-588)4012277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diffusionsprozess</subfield><subfield code="0">(DE-588)4274463-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diffusionsprozess</subfield><subfield code="0">(DE-588)4274463-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elliptischer Differentialoperator</subfield><subfield code="0">(DE-588)4140057-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Diffusion</subfield><subfield code="0">(DE-588)4012277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b97611</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854459</subfield></datafield></record></collection>
id DE-604.BV042419042
illustrated Not Illustrated
indexdate 2024-12-24T04:23:18Z
institution BVB
isbn 9780387226040
9780387983158
issn 1431-7028
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027854459
oclc_num 704424515
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XIV, 232 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher Springer New York
record_format marc
series2 Probability and its Applications, A Series of the Applied Probability Trust
spellingShingle Bass, Richard F. 1951-
Diffusions and Elliptic Operators
Mathematics
Global analysis (Mathematics)
Distribution (Probability theory)
Probability Theory and Stochastic Processes
Analysis
Mathematik
Elliptischer Differentialoperator (DE-588)4140057-4 gnd
Diffusion (DE-588)4012277-3 gnd
Diffusionsprozess (DE-588)4274463-5 gnd
Stochastische Differentialgleichung (DE-588)4057621-8 gnd
subject_GND (DE-588)4140057-4
(DE-588)4012277-3
(DE-588)4274463-5
(DE-588)4057621-8
title Diffusions and Elliptic Operators
title_auth Diffusions and Elliptic Operators
title_exact_search Diffusions and Elliptic Operators
title_full Diffusions and Elliptic Operators by Richard F. Bass
title_fullStr Diffusions and Elliptic Operators by Richard F. Bass
title_full_unstemmed Diffusions and Elliptic Operators by Richard F. Bass
title_short Diffusions and Elliptic Operators
title_sort diffusions and elliptic operators
topic Mathematics
Global analysis (Mathematics)
Distribution (Probability theory)
Probability Theory and Stochastic Processes
Analysis
Mathematik
Elliptischer Differentialoperator (DE-588)4140057-4 gnd
Diffusion (DE-588)4012277-3 gnd
Diffusionsprozess (DE-588)4274463-5 gnd
Stochastische Differentialgleichung (DE-588)4057621-8 gnd
topic_facet Mathematics
Global analysis (Mathematics)
Distribution (Probability theory)
Probability Theory and Stochastic Processes
Analysis
Mathematik
Elliptischer Differentialoperator
Diffusion
Diffusionsprozess
Stochastische Differentialgleichung
url https://doi.org/10.1007/b97611
work_keys_str_mv AT bassrichardf diffusionsandellipticoperators