Nonsmooth Equations in Optimization Regularity, Calculus, Methods and Applications

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Klatte, Diethard 1950- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Springer US 2002
Schriftenreihe:Nonconvex Optimization and Its Applications 60
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042418882
003 DE-604
005 20171009
007 cr|uuu---uuuuu
008 150317s2002 xx o|||| 00||| eng d
020 |a 9780306476167  |c Online  |9 978-0-306-47616-7 
020 |a 9781402005503  |c Print  |9 978-1-4020-0550-3 
024 7 |a 10.1007/b130810  |2 doi 
035 |a (OCoLC)1165546559 
035 |a (DE-599)BVBBV042418882 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 519.6  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Klatte, Diethard  |d 1950-  |e Verfasser  |0 (DE-588)1020724285  |4 aut 
245 1 0 |a Nonsmooth Equations in Optimization  |b Regularity, Calculus, Methods and Applications  |c by Diethard Klatte, Bernd Kummer 
264 1 |a Boston, MA  |b Springer US  |c 2002 
300 |a 1 Online-Ressource (XXVIII, 333 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Nonconvex Optimization and Its Applications  |v 60  |x 1571-568X 
500 |a Many questions dealing with solvability, stability and solution methods for variational inequalities or equilibrium, optimization and complementarity problems lead to the analysis of certain (perturbed) equations. This often requires a reformulation of the initial model being under consideration. Due to the specific of the original problem, the resulting equation is usually either not differentiable (even if the data of the original model are smooth), or it does not satisfy the assumptions of the classical implicit function theorem. This phenomenon is the main reason why a considerable analytical instrument dealing with generalized equations (i.e., with finding zeros of multivalued mappings) and nonsmooth equations (i.e., the defining functions are not continuously differentiable) has been developed during the last 20 years, and that under very different viewpoints and assumptions. In this theory, the classical hypotheses of convex analysis, in particular, monotonicity and convexity, have been weakened or dropped, and the scope of possible applications seems to be quite large. Briefly, this discipline is often called nonsmooth analysis, sometimes also variational analysis. Our book fits into this discipline, however, our main intention is to develop the analytical theory in close connection with the needs of applications in optimization and related subjects. Main Topics of the Book 1. Extended analysis of Lipschitz functions and their generalized derivatives, including "Newton maps" and regularity of multivalued mappings. 2. Principle of successive approximation under metric regularity and its implication to implicit functions 
650 4 |a Mathematics 
650 4 |a Functional analysis 
650 4 |a Computer science / Mathematics 
650 4 |a Mathematical optimization 
650 4 |a Optimization 
650 4 |a Calculus of Variations and Optimal Control; Optimization 
650 4 |a Computational Mathematics and Numerical Analysis 
650 4 |a Approximations and Expansions 
650 4 |a Functional Analysis 
650 4 |a Informatik 
650 4 |a Mathematik 
650 0 7 |a Nichtglatte Optimierung  |0 (DE-588)4120798-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Nichtglatte Optimierung  |0 (DE-588)4120798-1  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Kummer, Bernd  |e Sonstige  |4 oth 
830 0 |a Nonconvex Optimization and Its Applications  |v 60  |w (DE-604)BV010085908  |9 60 
856 4 0 |u https://doi.org/10.1007/b130810  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027854299 

Datensatz im Suchindex

DE-BY-TUM_katkey 2065892
_version_ 1820809100785614848
any_adam_object
author Klatte, Diethard 1950-
author_GND (DE-588)1020724285
author_facet Klatte, Diethard 1950-
author_role aut
author_sort Klatte, Diethard 1950-
author_variant d k dk
building Verbundindex
bvnumber BV042418882
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1165546559
(DE-599)BVBBV042418882
dewey-full 519.6
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.6
dewey-search 519.6
dewey-sort 3519.6
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/b130810
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03746nam a2200577zcb4500</leader><controlfield tag="001">BV042418882</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171009 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780306476167</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-306-47616-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402005503</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4020-0550-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b130810</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165546559</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042418882</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klatte, Diethard</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1020724285</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonsmooth Equations in Optimization</subfield><subfield code="b">Regularity, Calculus, Methods and Applications</subfield><subfield code="c">by Diethard Klatte, Bernd Kummer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXVIII, 333 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">60</subfield><subfield code="x">1571-568X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Many questions dealing with solvability, stability and solution methods for variational inequalities or equilibrium, optimization and complementarity problems lead to the analysis of certain (perturbed) equations. This often requires a reformulation of the initial model being under consideration. Due to the specific of the original problem, the resulting equation is usually either not differentiable (even if the data of the original model are smooth), or it does not satisfy the assumptions of the classical implicit function theorem. This phenomenon is the main reason why a considerable analytical instrument dealing with generalized equations (i.e., with finding zeros of multivalued mappings) and nonsmooth equations (i.e., the defining functions are not continuously differentiable) has been developed during the last 20 years, and that under very different viewpoints and assumptions. In this theory, the classical hypotheses of convex analysis, in particular, monotonicity and convexity, have been weakened or dropped, and the scope of possible applications seems to be quite large. Briefly, this discipline is often called nonsmooth analysis, sometimes also variational analysis. Our book fits into this discipline, however, our main intention is to develop the analytical theory in close connection with the needs of applications in optimization and related subjects. Main Topics of the Book 1. Extended analysis of Lipschitz functions and their generalized derivatives, including "Newton maps" and regularity of multivalued mappings. 2. Principle of successive approximation under metric regularity and its implication to implicit functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximations and Expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtglatte Optimierung</subfield><subfield code="0">(DE-588)4120798-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtglatte Optimierung</subfield><subfield code="0">(DE-588)4120798-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kummer, Bernd</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">60</subfield><subfield code="w">(DE-604)BV010085908</subfield><subfield code="9">60</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b130810</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854299</subfield></datafield></record></collection>
id DE-604.BV042418882
illustrated Not Illustrated
indexdate 2024-12-24T04:23:18Z
institution BVB
isbn 9780306476167
9781402005503
issn 1571-568X
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027854299
oclc_num 1165546559
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XXVIII, 333 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 2002
publishDateSearch 2002
publishDateSort 2002
publisher Springer US
record_format marc
series Nonconvex Optimization and Its Applications
series2 Nonconvex Optimization and Its Applications
spellingShingle Klatte, Diethard 1950-
Nonsmooth Equations in Optimization Regularity, Calculus, Methods and Applications
Nonconvex Optimization and Its Applications
Mathematics
Functional analysis
Computer science / Mathematics
Mathematical optimization
Optimization
Calculus of Variations and Optimal Control; Optimization
Computational Mathematics and Numerical Analysis
Approximations and Expansions
Functional Analysis
Informatik
Mathematik
Nichtglatte Optimierung (DE-588)4120798-1 gnd
subject_GND (DE-588)4120798-1
title Nonsmooth Equations in Optimization Regularity, Calculus, Methods and Applications
title_auth Nonsmooth Equations in Optimization Regularity, Calculus, Methods and Applications
title_exact_search Nonsmooth Equations in Optimization Regularity, Calculus, Methods and Applications
title_full Nonsmooth Equations in Optimization Regularity, Calculus, Methods and Applications by Diethard Klatte, Bernd Kummer
title_fullStr Nonsmooth Equations in Optimization Regularity, Calculus, Methods and Applications by Diethard Klatte, Bernd Kummer
title_full_unstemmed Nonsmooth Equations in Optimization Regularity, Calculus, Methods and Applications by Diethard Klatte, Bernd Kummer
title_short Nonsmooth Equations in Optimization
title_sort nonsmooth equations in optimization regularity calculus methods and applications
title_sub Regularity, Calculus, Methods and Applications
topic Mathematics
Functional analysis
Computer science / Mathematics
Mathematical optimization
Optimization
Calculus of Variations and Optimal Control; Optimization
Computational Mathematics and Numerical Analysis
Approximations and Expansions
Functional Analysis
Informatik
Mathematik
Nichtglatte Optimierung (DE-588)4120798-1 gnd
topic_facet Mathematics
Functional analysis
Computer science / Mathematics
Mathematical optimization
Optimization
Calculus of Variations and Optimal Control; Optimization
Computational Mathematics and Numerical Analysis
Approximations and Expansions
Functional Analysis
Informatik
Mathematik
Nichtglatte Optimierung
url https://doi.org/10.1007/b130810
volume_link (DE-604)BV010085908
work_keys_str_mv AT klattediethard nonsmoothequationsinoptimizationregularitycalculusmethodsandapplications
AT kummerbernd nonsmoothequationsinoptimizationregularitycalculusmethodsandapplications