Stochastic Processes on a Lattice and Gibbs Measures
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1991
|
Schriftenreihe: | Mathematical Physics Studies, A Supplementary Series to Letter in Mathematical Physics
11 |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042415918 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1991 |||| o||u| ||||||eng d | ||
020 | |a 9789401132688 |c Online |9 978-94-011-3268-8 | ||
020 | |a 9789401054423 |c Print |9 978-94-010-5442-3 | ||
024 | 7 | |a 10.1007/978-94-011-3268-8 |2 doi | |
035 | |a (OCoLC)863697833 | ||
035 | |a (DE-599)BVBBV042415918 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 621 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Prum, Bernard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stochastic Processes on a Lattice and Gibbs Measures |c by Bernard Prum, Jean Claude Fort |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1991 | |
300 | |a 1 Online-Ressource (IX, 220 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematical Physics Studies, A Supplementary Series to Letter in Mathematical Physics |v 11 | |
500 | |a In many domains one encounters "systems" of interacting elements, elements that interact more forcefully the closer they may be. The historical example upon which the theory offered in this book is based is that of magnetization as it is described by the Ising model. At the vertices of a regular lattice of sites, atoms "choos e" an orientation under the influence of the orientations of the neighboring atoms. But other examples are known, in physics (the theories of gasses, fluids, .. J, in biology (cells are increasingly likely to become malignant when their neighboring cells are malignant), or in medecine (the spread of contagious deseases, geogenetics, .. .), even in the social sciences (spread of behavioral traits within a population). Beyond the spacial aspect that is related to the idea of "neighboring" sites, the models for all these phenomena exhibit three common features: - The unavoidable ignorance about the totality of the phenomenon that is being studied and the presence of a great number of often unsuspected factors that are always unquantified lead inevitably to stochastic models. The concept of accident is very often inherent to the very nature of the phenomena considered, so, to justify this procedure, one has recourse to the physicist's principle of indeterminacy, or, for example, to the factor of chance in the Mendelian genetics of phenotypes | ||
650 | 4 | |a Physics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 0 | 7 | |a Phasenumwandlung |0 (DE-588)4132140-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gittermodell |0 (DE-588)4226961-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | 1 | |a Gittermodell |0 (DE-588)4226961-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Phasenumwandlung |0 (DE-588)4132140-6 |D s |
689 | 1 | 1 | |a Gittermodell |0 (DE-588)4226961-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Fort, Jean Claude |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-3268-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027851411 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2065234 |
---|---|
_version_ | 1816714046753210368 |
any_adam_object | |
author | Prum, Bernard |
author_facet | Prum, Bernard |
author_role | aut |
author_sort | Prum, Bernard |
author_variant | b p bp |
building | Verbundindex |
bvnumber | BV042415918 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863697833 (DE-599)BVBBV042415918 |
dewey-full | 621 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621 |
dewey-search | 621 |
dewey-sort | 3621 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
doi_str_mv | 10.1007/978-94-011-3268-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03496nmm a2200553zcb4500</leader><controlfield tag="001">BV042415918</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401132688</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-3268-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401054423</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-5442-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-3268-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863697833</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042415918</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Prum, Bernard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Processes on a Lattice and Gibbs Measures</subfield><subfield code="c">by Bernard Prum, Jean Claude Fort</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 220 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematical Physics Studies, A Supplementary Series to Letter in Mathematical Physics</subfield><subfield code="v">11</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In many domains one encounters "systems" of interacting elements, elements that interact more forcefully the closer they may be. The historical example upon which the theory offered in this book is based is that of magnetization as it is described by the Ising model. At the vertices of a regular lattice of sites, atoms "choos e" an orientation under the influence of the orientations of the neighboring atoms. But other examples are known, in physics (the theories of gasses, fluids, .. J, in biology (cells are increasingly likely to become malignant when their neighboring cells are malignant), or in medecine (the spread of contagious deseases, geogenetics, .. .), even in the social sciences (spread of behavioral traits within a population). Beyond the spacial aspect that is related to the idea of "neighboring" sites, the models for all these phenomena exhibit three common features: - The unavoidable ignorance about the totality of the phenomenon that is being studied and the presence of a great number of often unsuspected factors that are always unquantified lead inevitably to stochastic models. The concept of accident is very often inherent to the very nature of the phenomena considered, so, to justify this procedure, one has recourse to the physicist's principle of indeterminacy, or, for example, to the factor of chance in the Mendelian genetics of phenotypes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Phasenumwandlung</subfield><subfield code="0">(DE-588)4132140-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gittermodell</subfield><subfield code="0">(DE-588)4226961-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gittermodell</subfield><subfield code="0">(DE-588)4226961-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Phasenumwandlung</subfield><subfield code="0">(DE-588)4132140-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Gittermodell</subfield><subfield code="0">(DE-588)4226961-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fort, Jean Claude</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-3268-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027851411</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042415918 |
illustrated | Not Illustrated |
indexdate | 2024-11-25T17:51:13Z |
institution | BVB |
isbn | 9789401132688 9789401054423 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027851411 |
oclc_num | 863697833 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (IX, 220 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematical Physics Studies, A Supplementary Series to Letter in Mathematical Physics |
spellingShingle | Prum, Bernard Stochastic Processes on a Lattice and Gibbs Measures Physics Distribution (Probability theory) Statistical Physics, Dynamical Systems and Complexity Probability Theory and Stochastic Processes Phasenumwandlung (DE-588)4132140-6 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Gittermodell (DE-588)4226961-1 gnd |
subject_GND | (DE-588)4132140-6 (DE-588)4057630-9 (DE-588)4226961-1 |
title | Stochastic Processes on a Lattice and Gibbs Measures |
title_auth | Stochastic Processes on a Lattice and Gibbs Measures |
title_exact_search | Stochastic Processes on a Lattice and Gibbs Measures |
title_full | Stochastic Processes on a Lattice and Gibbs Measures by Bernard Prum, Jean Claude Fort |
title_fullStr | Stochastic Processes on a Lattice and Gibbs Measures by Bernard Prum, Jean Claude Fort |
title_full_unstemmed | Stochastic Processes on a Lattice and Gibbs Measures by Bernard Prum, Jean Claude Fort |
title_short | Stochastic Processes on a Lattice and Gibbs Measures |
title_sort | stochastic processes on a lattice and gibbs measures |
topic | Physics Distribution (Probability theory) Statistical Physics, Dynamical Systems and Complexity Probability Theory and Stochastic Processes Phasenumwandlung (DE-588)4132140-6 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Gittermodell (DE-588)4226961-1 gnd |
topic_facet | Physics Distribution (Probability theory) Statistical Physics, Dynamical Systems and Complexity Probability Theory and Stochastic Processes Phasenumwandlung Stochastischer Prozess Gittermodell |
url | https://doi.org/10.1007/978-94-011-3268-8 |
work_keys_str_mv | AT prumbernard stochasticprocessesonalatticeandgibbsmeasures AT fortjeanclaude stochasticprocessesonalatticeandgibbsmeasures |