Stochastic Processes on a Lattice and Gibbs Measures

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Prum, Bernard (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1991
Schriftenreihe:Mathematical Physics Studies, A Supplementary Series to Letter in Mathematical Physics 11
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV042415918
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150316s1991 |||| o||u| ||||||eng d
020 |a 9789401132688  |c Online  |9 978-94-011-3268-8 
020 |a 9789401054423  |c Print  |9 978-94-010-5442-3 
024 7 |a 10.1007/978-94-011-3268-8  |2 doi 
035 |a (OCoLC)863697833 
035 |a (DE-599)BVBBV042415918 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-91  |a DE-83 
082 0 |a 621  |2 23 
084 |a PHY 000  |2 stub 
100 1 |a Prum, Bernard  |e Verfasser  |4 aut 
245 1 0 |a Stochastic Processes on a Lattice and Gibbs Measures  |c by Bernard Prum, Jean Claude Fort 
264 1 |a Dordrecht  |b Springer Netherlands  |c 1991 
300 |a 1 Online-Ressource (IX, 220 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Mathematical Physics Studies, A Supplementary Series to Letter in Mathematical Physics  |v 11 
500 |a In many domains one encounters "systems" of interacting elements, elements that interact more forcefully the closer they may be. The historical example upon which the theory offered in this book is based is that of magnetization as it is described by the Ising model. At the vertices of a regular lattice of sites, atoms "choos e" an orientation under the influence of the orientations of the neighboring atoms. But other examples are known, in physics (the theories of gasses, fluids, .. J, in biology (cells are increasingly likely to become malignant when their neighboring cells are malignant), or in medecine (the spread of contagious deseases, geogenetics, .. .), even in the social sciences (spread of behavioral traits within a population). Beyond the spacial aspect that is related to the idea of "neighboring" sites, the models for all these phenomena exhibit three common features: - The unavoidable ignorance about the totality of the phenomenon that is being studied and the presence of a great number of often unsuspected factors that are always unquantified lead inevitably to stochastic models. The concept of accident is very often inherent to the very nature of the phenomena considered, so, to justify this procedure, one has recourse to the physicist's principle of indeterminacy, or, for example, to the factor of chance in the Mendelian genetics of phenotypes 
650 4 |a Physics 
650 4 |a Distribution (Probability theory) 
650 4 |a Statistical Physics, Dynamical Systems and Complexity 
650 4 |a Probability Theory and Stochastic Processes 
650 0 7 |a Phasenumwandlung  |0 (DE-588)4132140-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Stochastischer Prozess  |0 (DE-588)4057630-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Gittermodell  |0 (DE-588)4226961-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Stochastischer Prozess  |0 (DE-588)4057630-9  |D s 
689 0 1 |a Gittermodell  |0 (DE-588)4226961-1  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Phasenumwandlung  |0 (DE-588)4132140-6  |D s 
689 1 1 |a Gittermodell  |0 (DE-588)4226961-1  |D s 
689 1 |8 2\p  |5 DE-604 
700 1 |a Fort, Jean Claude  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-94-011-3268-8  |x Verlag  |3 Volltext 
912 |a ZDB-2-PHA  |a ZDB-2-BAE 
940 1 |q ZDB-2-PHA_Archive 
999 |a oai:aleph.bib-bvb.de:BVB01-027851411 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_katkey 2065234
_version_ 1816714046753210368
any_adam_object
author Prum, Bernard
author_facet Prum, Bernard
author_role aut
author_sort Prum, Bernard
author_variant b p bp
building Verbundindex
bvnumber BV042415918
classification_tum PHY 000
collection ZDB-2-PHA
ZDB-2-BAE
ctrlnum (OCoLC)863697833
(DE-599)BVBBV042415918
dewey-full 621
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 621 - Applied physics
dewey-raw 621
dewey-search 621
dewey-sort 3621
dewey-tens 620 - Engineering and allied operations
discipline Physik
doi_str_mv 10.1007/978-94-011-3268-8
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03496nmm a2200553zcb4500</leader><controlfield tag="001">BV042415918</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401132688</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-3268-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401054423</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-5442-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-3268-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863697833</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042415918</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Prum, Bernard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Processes on a Lattice and Gibbs Measures</subfield><subfield code="c">by Bernard Prum, Jean Claude Fort</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 220 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematical Physics Studies, A Supplementary Series to Letter in Mathematical Physics</subfield><subfield code="v">11</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In many domains one encounters "systems" of interacting elements, elements that interact more forcefully the closer they may be. The historical example upon which the theory offered in this book is based is that of magnetization as it is described by the Ising model. At the vertices of a regular lattice of sites, atoms "choos e" an orientation under the influence of the orientations of the neighboring atoms. But other examples are known, in physics (the theories of gasses, fluids, .. J, in biology (cells are increasingly likely to become malignant when their neighboring cells are malignant), or in medecine (the spread of contagious deseases, geogenetics, .. .), even in the social sciences (spread of behavioral traits within a population). Beyond the spacial aspect that is related to the idea of "neighboring" sites, the models for all these phenomena exhibit three common features: - The unavoidable ignorance about the totality of the phenomenon that is being studied and the presence of a great number of often unsuspected factors that are always unquantified lead inevitably to stochastic models. The concept of accident is very often inherent to the very nature of the phenomena considered, so, to justify this procedure, one has recourse to the physicist's principle of indeterminacy, or, for example, to the factor of chance in the Mendelian genetics of phenotypes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Phasenumwandlung</subfield><subfield code="0">(DE-588)4132140-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gittermodell</subfield><subfield code="0">(DE-588)4226961-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gittermodell</subfield><subfield code="0">(DE-588)4226961-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Phasenumwandlung</subfield><subfield code="0">(DE-588)4132140-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Gittermodell</subfield><subfield code="0">(DE-588)4226961-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fort, Jean Claude</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-3268-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027851411</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV042415918
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9789401132688
9789401054423
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027851411
oclc_num 863697833
open_access_boolean
owner DE-91
DE-BY-TUM
DE-83
owner_facet DE-91
DE-BY-TUM
DE-83
physical 1 Online-Ressource (IX, 220 p)
psigel ZDB-2-PHA
ZDB-2-BAE
ZDB-2-PHA_Archive
publishDate 1991
publishDateSearch 1991
publishDateSort 1991
publisher Springer Netherlands
record_format marc
series2 Mathematical Physics Studies, A Supplementary Series to Letter in Mathematical Physics
spellingShingle Prum, Bernard
Stochastic Processes on a Lattice and Gibbs Measures
Physics
Distribution (Probability theory)
Statistical Physics, Dynamical Systems and Complexity
Probability Theory and Stochastic Processes
Phasenumwandlung (DE-588)4132140-6 gnd
Stochastischer Prozess (DE-588)4057630-9 gnd
Gittermodell (DE-588)4226961-1 gnd
subject_GND (DE-588)4132140-6
(DE-588)4057630-9
(DE-588)4226961-1
title Stochastic Processes on a Lattice and Gibbs Measures
title_auth Stochastic Processes on a Lattice and Gibbs Measures
title_exact_search Stochastic Processes on a Lattice and Gibbs Measures
title_full Stochastic Processes on a Lattice and Gibbs Measures by Bernard Prum, Jean Claude Fort
title_fullStr Stochastic Processes on a Lattice and Gibbs Measures by Bernard Prum, Jean Claude Fort
title_full_unstemmed Stochastic Processes on a Lattice and Gibbs Measures by Bernard Prum, Jean Claude Fort
title_short Stochastic Processes on a Lattice and Gibbs Measures
title_sort stochastic processes on a lattice and gibbs measures
topic Physics
Distribution (Probability theory)
Statistical Physics, Dynamical Systems and Complexity
Probability Theory and Stochastic Processes
Phasenumwandlung (DE-588)4132140-6 gnd
Stochastischer Prozess (DE-588)4057630-9 gnd
Gittermodell (DE-588)4226961-1 gnd
topic_facet Physics
Distribution (Probability theory)
Statistical Physics, Dynamical Systems and Complexity
Probability Theory and Stochastic Processes
Phasenumwandlung
Stochastischer Prozess
Gittermodell
url https://doi.org/10.1007/978-94-011-3268-8
work_keys_str_mv AT prumbernard stochasticprocessesonalatticeandgibbsmeasures
AT fortjeanclaude stochasticprocessesonalatticeandgibbsmeasures