Computational methods for kinetic models of magnetically confined plasmas

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Killeen, John (VerfasserIn), Kerbel, G. D. (VerfasserIn), McCoy, M. G. (VerfasserIn), Mirin, A. A. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: New York ; Berlin ; Heidelberg ; Tokyo Springer-Verlag 1986
Schriftenreihe:Springer Series in Computational Physics
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042413964
003 DE-604
005 20220113
007 cr|uuu---uuuuu
008 150316s1986 xx |||| o|||| 00||| eng d
020 |a 9783642859540  |c Online  |9 978-3-642-85954-0 
024 7 |a 10.1007/978-3-642-85954-0  |2 doi 
035 |a (OCoLC)864003035 
035 |a (DE-599)BVBBV042413964 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-91  |a DE-83 
082 0 |a 539  |2 23 
084 |a PHY 592d  |2 stub 
084 |a PHY 000  |2 stub 
084 |a NUC 730f  |2 stub 
084 |a 76X05  |2 msc 
100 1 |a Killeen, John  |0 (DE-588)1240332718  |4 aut 
245 1 0 |a Computational methods for kinetic models of magnetically confined plasmas  |c by J. Killeen; G. D. Kerbel ; M. G. McCoy ; A. A. Mirin 
264 1 |a New York ; Berlin ; Heidelberg ; Tokyo  |b Springer-Verlag  |c 1986 
300 |a 1 Online-Ressource (VIII, 199 Seiten)  |b Diagramme 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Springer Series in Computational Physics  |x 1434-8322 
500 |a Because magnetically confined plasmas are generally not found in a state of thermodynamic equilibrium, they have been studied extensively with methods of applied kinetic theory. In closed magnetic field line confinement devices such as the tokamak, non-Maxwellian distortions usually occur as a result of auxiliary heating and transport. In magnetic mirror configurations even the intended steady state plasma is far from local thermodynamic equilibrium because of losses along open magnetic field lines. In both of these major fusion devices, kinetic models based on the Boltzmann equation with Fokker-Planck collision terms have been successful in representing plasma behavior. The heating of plasmas by energetic neutral beams or microwaves, the production and thermalization of a-particles in thermonuclear reactor plasmas, the study of runaway electrons in tokamaks, and the performance of two-energy compo­ nent fusion reactors are some examples of processes in which the solution of kinetic equations is appropriate and, moreover, generally necessary for an understanding of the plasma dynamics. Ultimately, the problem is to solve a nonlinear partial differential equation for the distribution function of each charged plasma species in terms of six phase space variables and time. The dimensionality of the problem may be reduced through imposing certain symmetry conditions. For example, fewer spatial dimensions are needed if either the magnetic field is taken to be uniform or the magnetic field inhomogeneity enters principally through its variation along the direction of the field 
650 4 |a Physics 
650 4 |a Mathematical physics 
650 4 |a Atomic, Molecular, Optical and Plasma Physics 
650 4 |a Mathematical Methods in Physics 
650 4 |a Numerical and Computational Physics 
650 4 |a Mathematische Physik 
650 0 7 |a Magnetischer Einschluss  |0 (DE-588)4123706-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Plasmaeinschluss  |0 (DE-588)4046256-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Kinetik  |0 (DE-588)4030665-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematisches Modell  |0 (DE-588)4114528-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Fusionsplasma  |0 (DE-588)4617284-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Magnetfeld  |0 (DE-588)4074450-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Plasma  |0 (DE-588)4046249-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Fokker-Planck-Gleichung  |0 (DE-588)4126333-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Fusionsplasma  |0 (DE-588)4617284-1  |D s 
689 0 1 |a Magnetischer Einschluss  |0 (DE-588)4123706-7  |D s 
689 0 2 |a Fokker-Planck-Gleichung  |0 (DE-588)4126333-9  |D s 
689 0 3 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |D s 
689 0 |5 DE-604 
689 1 0 |a Magnetfeld  |0 (DE-588)4074450-4  |D s 
689 1 1 |a Plasma  |0 (DE-588)4046249-3  |D s 
689 1 2 |a Kinetik  |0 (DE-588)4030665-3  |D s 
689 1 |8 1\p  |5 DE-604 
689 2 0 |a Plasmaeinschluss  |0 (DE-588)4046256-0  |D s 
689 2 1 |a Mathematisches Modell  |0 (DE-588)4114528-8  |D s 
689 2 |8 2\p  |5 DE-604 
700 1 |a Kerbel, G. D.  |0 (DE-588)1240332890  |4 aut 
700 1 |a McCoy, M. G.  |0 (DE-588)1240332947  |4 aut 
700 1 |a Mirin, A. A.  |0 (DE-588)1240333307  |4 aut 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-3-642-85956-4 
856 4 0 |u https://doi.org/10.1007/978-3-642-85954-0  |x Verlag  |3 Volltext 
912 |a ZDB-2-PHA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-PHA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027849457 

Datensatz im Suchindex

DE-BY-TUM_katkey 2063281
_version_ 1820853288270036992
any_adam_object
author Killeen, John
Kerbel, G. D.
McCoy, M. G.
Mirin, A. A.
author_GND (DE-588)1240332718
(DE-588)1240332890
(DE-588)1240332947
(DE-588)1240333307
author_facet Killeen, John
Kerbel, G. D.
McCoy, M. G.
Mirin, A. A.
author_role aut
aut
aut
aut
author_sort Killeen, John
author_variant j k jk
g d k gd gdk
m g m mg mgm
a a m aa aam
building Verbundindex
bvnumber BV042413964
classification_tum PHY 592d
PHY 000
NUC 730f
collection ZDB-2-PHA
ZDB-2-BAE
ctrlnum (OCoLC)864003035
(DE-599)BVBBV042413964
dewey-full 539
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 539 - Modern physics
dewey-raw 539
dewey-search 539
dewey-sort 3539
dewey-tens 530 - Physics
discipline Physik
Energietechnik
doi_str_mv 10.1007/978-3-642-85954-0
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04744nam a2200793zc 4500</leader><controlfield tag="001">BV042413964</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220113 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1986 xx |||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642859540</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-85954-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-85954-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864003035</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413964</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">539</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 592d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NUC 730f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">76X05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Killeen, John</subfield><subfield code="0">(DE-588)1240332718</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational methods for kinetic models of magnetically confined plasmas</subfield><subfield code="c">by J. Killeen; G. D. Kerbel ; M. G. McCoy ; A. A. Mirin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York ; Berlin ; Heidelberg ; Tokyo</subfield><subfield code="b">Springer-Verlag</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 199 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Computational Physics</subfield><subfield code="x">1434-8322</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Because magnetically confined plasmas are generally not found in a state of thermodynamic equilibrium, they have been studied extensively with methods of applied kinetic theory. In closed magnetic field line confinement devices such as the tokamak, non-Maxwellian distortions usually occur as a result of auxiliary heating and transport. In magnetic mirror configurations even the intended steady state plasma is far from local thermodynamic equilibrium because of losses along open magnetic field lines. In both of these major fusion devices, kinetic models based on the Boltzmann equation with Fokker-Planck collision terms have been successful in representing plasma behavior. The heating of plasmas by energetic neutral beams or microwaves, the production and thermalization of a-particles in thermonuclear reactor plasmas, the study of runaway electrons in tokamaks, and the performance of two-energy compo­ nent fusion reactors are some examples of processes in which the solution of kinetic equations is appropriate and, moreover, generally necessary for an understanding of the plasma dynamics. Ultimately, the problem is to solve a nonlinear partial differential equation for the distribution function of each charged plasma species in terms of six phase space variables and time. The dimensionality of the problem may be reduced through imposing certain symmetry conditions. For example, fewer spatial dimensions are needed if either the magnetic field is taken to be uniform or the magnetic field inhomogeneity enters principally through its variation along the direction of the field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atomic, Molecular, Optical and Plasma Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetischer Einschluss</subfield><subfield code="0">(DE-588)4123706-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Plasmaeinschluss</subfield><subfield code="0">(DE-588)4046256-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kinetik</subfield><subfield code="0">(DE-588)4030665-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fusionsplasma</subfield><subfield code="0">(DE-588)4617284-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetfeld</subfield><subfield code="0">(DE-588)4074450-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Plasma</subfield><subfield code="0">(DE-588)4046249-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fokker-Planck-Gleichung</subfield><subfield code="0">(DE-588)4126333-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fusionsplasma</subfield><subfield code="0">(DE-588)4617284-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Magnetischer Einschluss</subfield><subfield code="0">(DE-588)4123706-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fokker-Planck-Gleichung</subfield><subfield code="0">(DE-588)4126333-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Magnetfeld</subfield><subfield code="0">(DE-588)4074450-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Plasma</subfield><subfield code="0">(DE-588)4046249-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Kinetik</subfield><subfield code="0">(DE-588)4030665-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Plasmaeinschluss</subfield><subfield code="0">(DE-588)4046256-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kerbel, G. D.</subfield><subfield code="0">(DE-588)1240332890</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McCoy, M. G.</subfield><subfield code="0">(DE-588)1240332947</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirin, A. A.</subfield><subfield code="0">(DE-588)1240333307</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-642-85956-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-85954-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849457</subfield></datafield></record></collection>
id DE-604.BV042413964
illustrated Not Illustrated
indexdate 2024-12-24T04:23:08Z
institution BVB
isbn 9783642859540
issn 1434-8322
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027849457
oclc_num 864003035
open_access_boolean
owner DE-91
DE-BY-TUM
DE-83
owner_facet DE-91
DE-BY-TUM
DE-83
physical 1 Online-Ressource (VIII, 199 Seiten) Diagramme
psigel ZDB-2-PHA
ZDB-2-BAE
ZDB-2-PHA_Archive
publishDate 1986
publishDateSearch 1986
publishDateSort 1986
publisher Springer-Verlag
record_format marc
series2 Springer Series in Computational Physics
spellingShingle Killeen, John
Kerbel, G. D.
McCoy, M. G.
Mirin, A. A.
Computational methods for kinetic models of magnetically confined plasmas
Physics
Mathematical physics
Atomic, Molecular, Optical and Plasma Physics
Mathematical Methods in Physics
Numerical and Computational Physics
Mathematische Physik
Magnetischer Einschluss (DE-588)4123706-7 gnd
Plasmaeinschluss (DE-588)4046256-0 gnd
Kinetik (DE-588)4030665-3 gnd
Mathematisches Modell (DE-588)4114528-8 gnd
Fusionsplasma (DE-588)4617284-1 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
Magnetfeld (DE-588)4074450-4 gnd
Plasma (DE-588)4046249-3 gnd
Fokker-Planck-Gleichung (DE-588)4126333-9 gnd
subject_GND (DE-588)4123706-7
(DE-588)4046256-0
(DE-588)4030665-3
(DE-588)4114528-8
(DE-588)4617284-1
(DE-588)4128130-5
(DE-588)4074450-4
(DE-588)4046249-3
(DE-588)4126333-9
title Computational methods for kinetic models of magnetically confined plasmas
title_auth Computational methods for kinetic models of magnetically confined plasmas
title_exact_search Computational methods for kinetic models of magnetically confined plasmas
title_full Computational methods for kinetic models of magnetically confined plasmas by J. Killeen; G. D. Kerbel ; M. G. McCoy ; A. A. Mirin
title_fullStr Computational methods for kinetic models of magnetically confined plasmas by J. Killeen; G. D. Kerbel ; M. G. McCoy ; A. A. Mirin
title_full_unstemmed Computational methods for kinetic models of magnetically confined plasmas by J. Killeen; G. D. Kerbel ; M. G. McCoy ; A. A. Mirin
title_short Computational methods for kinetic models of magnetically confined plasmas
title_sort computational methods for kinetic models of magnetically confined plasmas
topic Physics
Mathematical physics
Atomic, Molecular, Optical and Plasma Physics
Mathematical Methods in Physics
Numerical and Computational Physics
Mathematische Physik
Magnetischer Einschluss (DE-588)4123706-7 gnd
Plasmaeinschluss (DE-588)4046256-0 gnd
Kinetik (DE-588)4030665-3 gnd
Mathematisches Modell (DE-588)4114528-8 gnd
Fusionsplasma (DE-588)4617284-1 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
Magnetfeld (DE-588)4074450-4 gnd
Plasma (DE-588)4046249-3 gnd
Fokker-Planck-Gleichung (DE-588)4126333-9 gnd
topic_facet Physics
Mathematical physics
Atomic, Molecular, Optical and Plasma Physics
Mathematical Methods in Physics
Numerical and Computational Physics
Mathematische Physik
Magnetischer Einschluss
Plasmaeinschluss
Kinetik
Mathematisches Modell
Fusionsplasma
Numerisches Verfahren
Magnetfeld
Plasma
Fokker-Planck-Gleichung
url https://doi.org/10.1007/978-3-642-85954-0
work_keys_str_mv AT killeenjohn computationalmethodsforkineticmodelsofmagneticallyconfinedplasmas
AT kerbelgd computationalmethodsforkineticmodelsofmagneticallyconfinedplasmas
AT mccoymg computationalmethodsforkineticmodelsofmagneticallyconfinedplasmas
AT mirinaa computationalmethodsforkineticmodelsofmagneticallyconfinedplasmas