Computational methods for kinetic models of magnetically confined plasmas
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York ; Berlin ; Heidelberg ; Tokyo
Springer-Verlag
1986
|
Schriftenreihe: | Springer Series in Computational Physics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV042413964 | ||
003 | DE-604 | ||
005 | 20220113 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1986 xx |||| o|||| 00||| eng d | ||
020 | |a 9783642859540 |c Online |9 978-3-642-85954-0 | ||
024 | 7 | |a 10.1007/978-3-642-85954-0 |2 doi | |
035 | |a (OCoLC)864003035 | ||
035 | |a (DE-599)BVBBV042413964 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 539 |2 23 | |
084 | |a PHY 592d |2 stub | ||
084 | |a PHY 000 |2 stub | ||
084 | |a NUC 730f |2 stub | ||
084 | |a 76X05 |2 msc | ||
100 | 1 | |a Killeen, John |0 (DE-588)1240332718 |4 aut | |
245 | 1 | 0 | |a Computational methods for kinetic models of magnetically confined plasmas |c by J. Killeen; G. D. Kerbel ; M. G. McCoy ; A. A. Mirin |
264 | 1 | |a New York ; Berlin ; Heidelberg ; Tokyo |b Springer-Verlag |c 1986 | |
300 | |a 1 Online-Ressource (VIII, 199 Seiten) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Computational Physics |x 1434-8322 | |
500 | |a Because magnetically confined plasmas are generally not found in a state of thermodynamic equilibrium, they have been studied extensively with methods of applied kinetic theory. In closed magnetic field line confinement devices such as the tokamak, non-Maxwellian distortions usually occur as a result of auxiliary heating and transport. In magnetic mirror configurations even the intended steady state plasma is far from local thermodynamic equilibrium because of losses along open magnetic field lines. In both of these major fusion devices, kinetic models based on the Boltzmann equation with Fokker-Planck collision terms have been successful in representing plasma behavior. The heating of plasmas by energetic neutral beams or microwaves, the production and thermalization of a-particles in thermonuclear reactor plasmas, the study of runaway electrons in tokamaks, and the performance of two-energy compo nent fusion reactors are some examples of processes in which the solution of kinetic equations is appropriate and, moreover, generally necessary for an understanding of the plasma dynamics. Ultimately, the problem is to solve a nonlinear partial differential equation for the distribution function of each charged plasma species in terms of six phase space variables and time. The dimensionality of the problem may be reduced through imposing certain symmetry conditions. For example, fewer spatial dimensions are needed if either the magnetic field is taken to be uniform or the magnetic field inhomogeneity enters principally through its variation along the direction of the field | ||
650 | 4 | |a Physics | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Atomic, Molecular, Optical and Plasma Physics | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Magnetischer Einschluss |0 (DE-588)4123706-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Plasmaeinschluss |0 (DE-588)4046256-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kinetik |0 (DE-588)4030665-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fusionsplasma |0 (DE-588)4617284-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Magnetfeld |0 (DE-588)4074450-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Plasma |0 (DE-588)4046249-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fokker-Planck-Gleichung |0 (DE-588)4126333-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fusionsplasma |0 (DE-588)4617284-1 |D s |
689 | 0 | 1 | |a Magnetischer Einschluss |0 (DE-588)4123706-7 |D s |
689 | 0 | 2 | |a Fokker-Planck-Gleichung |0 (DE-588)4126333-9 |D s |
689 | 0 | 3 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Magnetfeld |0 (DE-588)4074450-4 |D s |
689 | 1 | 1 | |a Plasma |0 (DE-588)4046249-3 |D s |
689 | 1 | 2 | |a Kinetik |0 (DE-588)4030665-3 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Plasmaeinschluss |0 (DE-588)4046256-0 |D s |
689 | 2 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
700 | 1 | |a Kerbel, G. D. |0 (DE-588)1240332890 |4 aut | |
700 | 1 | |a McCoy, M. G. |0 (DE-588)1240332947 |4 aut | |
700 | 1 | |a Mirin, A. A. |0 (DE-588)1240333307 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-642-85956-4 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-85954-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027849457 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2063281 |
---|---|
_version_ | 1820853288270036992 |
any_adam_object | |
author | Killeen, John Kerbel, G. D. McCoy, M. G. Mirin, A. A. |
author_GND | (DE-588)1240332718 (DE-588)1240332890 (DE-588)1240332947 (DE-588)1240333307 |
author_facet | Killeen, John Kerbel, G. D. McCoy, M. G. Mirin, A. A. |
author_role | aut aut aut aut |
author_sort | Killeen, John |
author_variant | j k jk g d k gd gdk m g m mg mgm a a m aa aam |
building | Verbundindex |
bvnumber | BV042413964 |
classification_tum | PHY 592d PHY 000 NUC 730f |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)864003035 (DE-599)BVBBV042413964 |
dewey-full | 539 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 539 - Modern physics |
dewey-raw | 539 |
dewey-search | 539 |
dewey-sort | 3539 |
dewey-tens | 530 - Physics |
discipline | Physik Energietechnik |
doi_str_mv | 10.1007/978-3-642-85954-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04744nam a2200793zc 4500</leader><controlfield tag="001">BV042413964</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220113 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1986 xx |||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642859540</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-85954-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-85954-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864003035</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413964</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">539</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 592d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NUC 730f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">76X05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Killeen, John</subfield><subfield code="0">(DE-588)1240332718</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational methods for kinetic models of magnetically confined plasmas</subfield><subfield code="c">by J. Killeen; G. D. Kerbel ; M. G. McCoy ; A. A. Mirin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York ; Berlin ; Heidelberg ; Tokyo</subfield><subfield code="b">Springer-Verlag</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 199 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Computational Physics</subfield><subfield code="x">1434-8322</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Because magnetically confined plasmas are generally not found in a state of thermodynamic equilibrium, they have been studied extensively with methods of applied kinetic theory. In closed magnetic field line confinement devices such as the tokamak, non-Maxwellian distortions usually occur as a result of auxiliary heating and transport. In magnetic mirror configurations even the intended steady state plasma is far from local thermodynamic equilibrium because of losses along open magnetic field lines. In both of these major fusion devices, kinetic models based on the Boltzmann equation with Fokker-Planck collision terms have been successful in representing plasma behavior. The heating of plasmas by energetic neutral beams or microwaves, the production and thermalization of a-particles in thermonuclear reactor plasmas, the study of runaway electrons in tokamaks, and the performance of two-energy compo nent fusion reactors are some examples of processes in which the solution of kinetic equations is appropriate and, moreover, generally necessary for an understanding of the plasma dynamics. Ultimately, the problem is to solve a nonlinear partial differential equation for the distribution function of each charged plasma species in terms of six phase space variables and time. The dimensionality of the problem may be reduced through imposing certain symmetry conditions. For example, fewer spatial dimensions are needed if either the magnetic field is taken to be uniform or the magnetic field inhomogeneity enters principally through its variation along the direction of the field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atomic, Molecular, Optical and Plasma Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetischer Einschluss</subfield><subfield code="0">(DE-588)4123706-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Plasmaeinschluss</subfield><subfield code="0">(DE-588)4046256-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kinetik</subfield><subfield code="0">(DE-588)4030665-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fusionsplasma</subfield><subfield code="0">(DE-588)4617284-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetfeld</subfield><subfield code="0">(DE-588)4074450-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Plasma</subfield><subfield code="0">(DE-588)4046249-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fokker-Planck-Gleichung</subfield><subfield code="0">(DE-588)4126333-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fusionsplasma</subfield><subfield code="0">(DE-588)4617284-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Magnetischer Einschluss</subfield><subfield code="0">(DE-588)4123706-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fokker-Planck-Gleichung</subfield><subfield code="0">(DE-588)4126333-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Magnetfeld</subfield><subfield code="0">(DE-588)4074450-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Plasma</subfield><subfield code="0">(DE-588)4046249-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Kinetik</subfield><subfield code="0">(DE-588)4030665-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Plasmaeinschluss</subfield><subfield code="0">(DE-588)4046256-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kerbel, G. D.</subfield><subfield code="0">(DE-588)1240332890</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McCoy, M. G.</subfield><subfield code="0">(DE-588)1240332947</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirin, A. A.</subfield><subfield code="0">(DE-588)1240333307</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-642-85956-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-85954-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849457</subfield></datafield></record></collection> |
id | DE-604.BV042413964 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T04:23:08Z |
institution | BVB |
isbn | 9783642859540 |
issn | 1434-8322 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027849457 |
oclc_num | 864003035 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (VIII, 199 Seiten) Diagramme |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Springer-Verlag |
record_format | marc |
series2 | Springer Series in Computational Physics |
spellingShingle | Killeen, John Kerbel, G. D. McCoy, M. G. Mirin, A. A. Computational methods for kinetic models of magnetically confined plasmas Physics Mathematical physics Atomic, Molecular, Optical and Plasma Physics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik Magnetischer Einschluss (DE-588)4123706-7 gnd Plasmaeinschluss (DE-588)4046256-0 gnd Kinetik (DE-588)4030665-3 gnd Mathematisches Modell (DE-588)4114528-8 gnd Fusionsplasma (DE-588)4617284-1 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Magnetfeld (DE-588)4074450-4 gnd Plasma (DE-588)4046249-3 gnd Fokker-Planck-Gleichung (DE-588)4126333-9 gnd |
subject_GND | (DE-588)4123706-7 (DE-588)4046256-0 (DE-588)4030665-3 (DE-588)4114528-8 (DE-588)4617284-1 (DE-588)4128130-5 (DE-588)4074450-4 (DE-588)4046249-3 (DE-588)4126333-9 |
title | Computational methods for kinetic models of magnetically confined plasmas |
title_auth | Computational methods for kinetic models of magnetically confined plasmas |
title_exact_search | Computational methods for kinetic models of magnetically confined plasmas |
title_full | Computational methods for kinetic models of magnetically confined plasmas by J. Killeen; G. D. Kerbel ; M. G. McCoy ; A. A. Mirin |
title_fullStr | Computational methods for kinetic models of magnetically confined plasmas by J. Killeen; G. D. Kerbel ; M. G. McCoy ; A. A. Mirin |
title_full_unstemmed | Computational methods for kinetic models of magnetically confined plasmas by J. Killeen; G. D. Kerbel ; M. G. McCoy ; A. A. Mirin |
title_short | Computational methods for kinetic models of magnetically confined plasmas |
title_sort | computational methods for kinetic models of magnetically confined plasmas |
topic | Physics Mathematical physics Atomic, Molecular, Optical and Plasma Physics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik Magnetischer Einschluss (DE-588)4123706-7 gnd Plasmaeinschluss (DE-588)4046256-0 gnd Kinetik (DE-588)4030665-3 gnd Mathematisches Modell (DE-588)4114528-8 gnd Fusionsplasma (DE-588)4617284-1 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Magnetfeld (DE-588)4074450-4 gnd Plasma (DE-588)4046249-3 gnd Fokker-Planck-Gleichung (DE-588)4126333-9 gnd |
topic_facet | Physics Mathematical physics Atomic, Molecular, Optical and Plasma Physics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik Magnetischer Einschluss Plasmaeinschluss Kinetik Mathematisches Modell Fusionsplasma Numerisches Verfahren Magnetfeld Plasma Fokker-Planck-Gleichung |
url | https://doi.org/10.1007/978-3-642-85954-0 |
work_keys_str_mv | AT killeenjohn computationalmethodsforkineticmodelsofmagneticallyconfinedplasmas AT kerbelgd computationalmethodsforkineticmodelsofmagneticallyconfinedplasmas AT mccoymg computationalmethodsforkineticmodelsofmagneticallyconfinedplasmas AT mirinaa computationalmethodsforkineticmodelsofmagneticallyconfinedplasmas |