Inverse Problems in Quantum Scattering Theory

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Chadan, K. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 1989
Ausgabe:Second Edition Revised and Expanded
Schriftenreihe:Texts and Monographs in Physics
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042413847
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150316s1989 xx o|||| 00||| eng d
020 |a 9783642833175  |c Online  |9 978-3-642-83317-5 
020 |a 9783642833199  |c Print  |9 978-3-642-83319-9 
024 7 |a 10.1007/978-3-642-83317-5  |2 doi 
035 |a (OCoLC)863863010 
035 |a (DE-599)BVBBV042413847 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-91  |a DE-83 
082 0 |a 530.15  |2 23 
084 |a PHY 000  |2 stub 
100 1 |a Chadan, K.  |e Verfasser  |4 aut 
245 1 0 |a Inverse Problems in Quantum Scattering Theory  |c by K. Chadan, P. C. Sabatier, R. G. Newton 
250 |a Second Edition Revised and Expanded 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1989 
300 |a 1 Online-Ressource (XXXI, 499p. 24 illus) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Texts and Monographs in Physics  |x 1864-5879 
500 |a The normal business of physicists may be schematically thought of as predic­ ting the motions of particles on the basis of known forces, or the propagation of radiation on the basis of a known constitution of matter. The inverse problem is to conclude what the forces or constitutions are on the basis of the observed motion. A large part of our sensory contact with the world around us depends on an intuitive solution of such an inverse problem: We infer the shape, size, and surface texture of external objects from their scattering and absorption of light as detected by our eyes. When we use scattering experiments to learn the size or shape of particles, or the forces they exert upon each other, the nature of the problem is similar, if more refined. The kinematics, the equations of motion, are usually assumed to be known. It is the forces that are sought, and how they vary from point to point. As with so many other physical ideas, the first one we know of to have touched upon the kind of inverse problem discussed in this book was Lord Rayleigh (1877). In the course of describing the vibrations of strings of variable density he briefly discusses the possibility of inferring the density distribution from the frequencies of vibration. This passage may be regarded as a precursor of the mathematical study of the inverse spectral problem some seventy years later 
650 4 |a Physics 
650 4 |a Global analysis (Mathematics) 
650 4 |a Quantum theory 
650 4 |a Mathematical physics 
650 4 |a Mathematical Methods in Physics 
650 4 |a Numerical and Computational Physics 
650 4 |a Quantum Information Technology, Spintronics 
650 4 |a Quantum Physics 
650 4 |a Analysis 
650 4 |a Mathematische Physik 
650 4 |a Quantentheorie 
650 0 7 |a Streutheorie  |0 (DE-588)4183697-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Inverses Streuproblem  |0 (DE-588)4027547-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Quantenmechanik  |0 (DE-588)4047989-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Inverses Problem  |0 (DE-588)4125161-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Streutheorie  |0 (DE-588)4183697-2  |D s 
689 0 1 |a Quantenmechanik  |0 (DE-588)4047989-4  |D s 
689 0 2 |a Inverses Problem  |0 (DE-588)4125161-1  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Inverses Streuproblem  |0 (DE-588)4027547-4  |D s 
689 1 |8 2\p  |5 DE-604 
700 1 |a Sabatier, P. C.  |e Sonstige  |4 oth 
700 1 |a Newton, R. G.  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-3-642-83317-5  |x Verlag  |3 Volltext 
912 |a ZDB-2-PHA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-PHA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027849340 

Datensatz im Suchindex

DE-BY-TUM_katkey 2063164
_version_ 1820853281144963072
any_adam_object
author Chadan, K.
author_facet Chadan, K.
author_role aut
author_sort Chadan, K.
author_variant k c kc
building Verbundindex
bvnumber BV042413847
classification_tum PHY 000
collection ZDB-2-PHA
ZDB-2-BAE
ctrlnum (OCoLC)863863010
(DE-599)BVBBV042413847
dewey-full 530.15
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 530 - Physics
dewey-raw 530.15
dewey-search 530.15
dewey-sort 3530.15
dewey-tens 530 - Physics
discipline Physik
doi_str_mv 10.1007/978-3-642-83317-5
edition Second Edition Revised and Expanded
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03868nam a2200685zc 4500</leader><controlfield tag="001">BV042413847</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1989 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642833175</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-83317-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642833199</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-83319-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-83317-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863863010</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413847</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chadan, K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inverse Problems in Quantum Scattering Theory</subfield><subfield code="c">by K. Chadan, P. C. Sabatier, R. G. Newton</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition Revised and Expanded</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXXI, 499p. 24 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts and Monographs in Physics</subfield><subfield code="x">1864-5879</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The normal business of physicists may be schematically thought of as predic­ ting the motions of particles on the basis of known forces, or the propagation of radiation on the basis of a known constitution of matter. The inverse problem is to conclude what the forces or constitutions are on the basis of the observed motion. A large part of our sensory contact with the world around us depends on an intuitive solution of such an inverse problem: We infer the shape, size, and surface texture of external objects from their scattering and absorption of light as detected by our eyes. When we use scattering experiments to learn the size or shape of particles, or the forces they exert upon each other, the nature of the problem is similar, if more refined. The kinematics, the equations of motion, are usually assumed to be known. It is the forces that are sought, and how they vary from point to point. As with so many other physical ideas, the first one we know of to have touched upon the kind of inverse problem discussed in this book was Lord Rayleigh (1877). In the course of describing the vibrations of strings of variable density he briefly discusses the possibility of inferring the density distribution from the frequencies of vibration. This passage may be regarded as a precursor of the mathematical study of the inverse spectral problem some seventy years later</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Information Technology, Spintronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Streutheorie</subfield><subfield code="0">(DE-588)4183697-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverses Streuproblem</subfield><subfield code="0">(DE-588)4027547-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverses Problem</subfield><subfield code="0">(DE-588)4125161-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Streutheorie</subfield><subfield code="0">(DE-588)4183697-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Inverses Problem</subfield><subfield code="0">(DE-588)4125161-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Inverses Streuproblem</subfield><subfield code="0">(DE-588)4027547-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sabatier, P. C.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Newton, R. G.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-83317-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849340</subfield></datafield></record></collection>
id DE-604.BV042413847
illustrated Not Illustrated
indexdate 2024-12-24T04:23:08Z
institution BVB
isbn 9783642833175
9783642833199
issn 1864-5879
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027849340
oclc_num 863863010
open_access_boolean
owner DE-91
DE-BY-TUM
DE-83
owner_facet DE-91
DE-BY-TUM
DE-83
physical 1 Online-Ressource (XXXI, 499p. 24 illus)
psigel ZDB-2-PHA
ZDB-2-BAE
ZDB-2-PHA_Archive
publishDate 1989
publishDateSearch 1989
publishDateSort 1989
publisher Springer Berlin Heidelberg
record_format marc
series2 Texts and Monographs in Physics
spellingShingle Chadan, K.
Inverse Problems in Quantum Scattering Theory
Physics
Global analysis (Mathematics)
Quantum theory
Mathematical physics
Mathematical Methods in Physics
Numerical and Computational Physics
Quantum Information Technology, Spintronics
Quantum Physics
Analysis
Mathematische Physik
Quantentheorie
Streutheorie (DE-588)4183697-2 gnd
Inverses Streuproblem (DE-588)4027547-4 gnd
Quantenmechanik (DE-588)4047989-4 gnd
Inverses Problem (DE-588)4125161-1 gnd
subject_GND (DE-588)4183697-2
(DE-588)4027547-4
(DE-588)4047989-4
(DE-588)4125161-1
title Inverse Problems in Quantum Scattering Theory
title_auth Inverse Problems in Quantum Scattering Theory
title_exact_search Inverse Problems in Quantum Scattering Theory
title_full Inverse Problems in Quantum Scattering Theory by K. Chadan, P. C. Sabatier, R. G. Newton
title_fullStr Inverse Problems in Quantum Scattering Theory by K. Chadan, P. C. Sabatier, R. G. Newton
title_full_unstemmed Inverse Problems in Quantum Scattering Theory by K. Chadan, P. C. Sabatier, R. G. Newton
title_short Inverse Problems in Quantum Scattering Theory
title_sort inverse problems in quantum scattering theory
topic Physics
Global analysis (Mathematics)
Quantum theory
Mathematical physics
Mathematical Methods in Physics
Numerical and Computational Physics
Quantum Information Technology, Spintronics
Quantum Physics
Analysis
Mathematische Physik
Quantentheorie
Streutheorie (DE-588)4183697-2 gnd
Inverses Streuproblem (DE-588)4027547-4 gnd
Quantenmechanik (DE-588)4047989-4 gnd
Inverses Problem (DE-588)4125161-1 gnd
topic_facet Physics
Global analysis (Mathematics)
Quantum theory
Mathematical physics
Mathematical Methods in Physics
Numerical and Computational Physics
Quantum Information Technology, Spintronics
Quantum Physics
Analysis
Mathematische Physik
Quantentheorie
Streutheorie
Inverses Streuproblem
Quantenmechanik
Inverses Problem
url https://doi.org/10.1007/978-3-642-83317-5
work_keys_str_mv AT chadank inverseproblemsinquantumscatteringtheory
AT sabatierpc inverseproblemsinquantumscatteringtheory
AT newtonrg inverseproblemsinquantumscatteringtheory