Models of Neural Networks III Association, Generalization, and Representation

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Domany, Eytan (HerausgeberIn), Hemmen, J. Leo (HerausgeberIn), Schulten, Klaus (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: New York, NY Springer New York 1996
Schriftenreihe:Physics of Neural Networks
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV042411049
003 DE-604
005 20171011
007 cr|uuu---uuuuu
008 150316s1996 |||| o||u| ||||||eng d
020 |a 9781461207238  |c Online  |9 978-1-4612-0723-8 
020 |a 9781461268826  |c Print  |9 978-1-4612-6882-6 
024 7 |a 10.1007/978-1-4612-0723-8  |2 doi 
035 |a (OCoLC)863757151 
035 |a (DE-599)BVBBV042411049 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-91  |a DE-83 
082 0 |a 621  |2 23 
084 |a PHY 000  |2 stub 
245 1 0 |a Models of Neural Networks III  |b Association, Generalization, and Representation  |c edited by Eytan Domany, J. Leo Hemmen, Klaus Schulten 
264 1 |a New York, NY  |b Springer New York  |c 1996 
300 |a 1 Online-Ressource (XIII, 311 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Physics of Neural Networks  |x 0939-3145 
500 |a One of the most challenging and fascinating problems of the theory of neural nets is that of asymptotic behavior, of how a system behaves as time proceeds. This is of particular relevance to many practical applications. Here we focus on association, generalization, and representation. We turn to the last topic first. The introductory chapter, "Global Analysis of Recurrent Neural Networks," by Andreas Herz presents an in-depth analysis of how to construct a Lyapunov function for various types of dynamics and neural coding. It includes a review of the recent work with John Hopfield on integrate-and­ fire neurons with local interactions. The chapter, "Receptive Fields and Maps in the Visual Cortex: Models of Ocular Dominance and Orientation Columns" by Ken Miller, explains how the primary visual cortex may asymptotically gain its specific structure through a self-organization process based on Hebbian learning. His argument since has been shown to be rather susceptible to generalization 
650 4 |a Physics 
650 4 |a Statistical Physics, Dynamical Systems and Complexity 
700 1 |a Domany, Eytan  |4 edt 
700 1 |a Hemmen, J. Leo  |4 edt 
700 1 |a Schulten, Klaus  |4 edt 
856 4 0 |u https://doi.org/10.1007/978-1-4612-0723-8  |x Verlag  |3 Volltext 
912 |a ZDB-2-PHA  |a ZDB-2-BAE 
940 1 |q ZDB-2-PHA_Archive 
999 |a oai:aleph.bib-bvb.de:BVB01-027846542 

Datensatz im Suchindex

DE-BY-TUM_katkey 2060370
_version_ 1816714042834681856
any_adam_object
author2 Domany, Eytan
Hemmen, J. Leo
Schulten, Klaus
author2_role edt
edt
edt
author2_variant e d ed
j l h jl jlh
k s ks
author_facet Domany, Eytan
Hemmen, J. Leo
Schulten, Klaus
building Verbundindex
bvnumber BV042411049
classification_tum PHY 000
collection ZDB-2-PHA
ZDB-2-BAE
ctrlnum (OCoLC)863757151
(DE-599)BVBBV042411049
dewey-full 621
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 621 - Applied physics
dewey-raw 621
dewey-search 621
dewey-sort 3621
dewey-tens 620 - Engineering and allied operations
discipline Physik
doi_str_mv 10.1007/978-1-4612-0723-8
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02362nmm a2200409zc 4500</leader><controlfield tag="001">BV042411049</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171011 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461207238</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0723-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461268826</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6882-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0723-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863757151</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042411049</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Models of Neural Networks III</subfield><subfield code="b">Association, Generalization, and Representation</subfield><subfield code="c">edited by Eytan Domany, J. Leo Hemmen, Klaus Schulten</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 311 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics of Neural Networks</subfield><subfield code="x">0939-3145</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">One of the most challenging and fascinating problems of the theory of neural nets is that of asymptotic behavior, of how a system behaves as time proceeds. This is of particular relevance to many practical applications. Here we focus on association, generalization, and representation. We turn to the last topic first. The introductory chapter, "Global Analysis of Recurrent Neural Networks," by Andreas Herz presents an in-depth analysis of how to construct a Lyapunov function for various types of dynamics and neural coding. It includes a review of the recent work with John Hopfield on integrate-and­ fire neurons with local interactions. The chapter, "Receptive Fields and Maps in the Visual Cortex: Models of Ocular Dominance and Orientation Columns" by Ken Miller, explains how the primary visual cortex may asymptotically gain its specific structure through a self-organization process based on Hebbian learning. His argument since has been shown to be rather susceptible to generalization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Domany, Eytan</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hemmen, J. Leo</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schulten, Klaus</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0723-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027846542</subfield></datafield></record></collection>
id DE-604.BV042411049
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9781461207238
9781461268826
issn 0939-3145
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027846542
oclc_num 863757151
open_access_boolean
owner DE-91
DE-BY-TUM
DE-83
owner_facet DE-91
DE-BY-TUM
DE-83
physical 1 Online-Ressource (XIII, 311 p)
psigel ZDB-2-PHA
ZDB-2-BAE
ZDB-2-PHA_Archive
publishDate 1996
publishDateSearch 1996
publishDateSort 1996
publisher Springer New York
record_format marc
series2 Physics of Neural Networks
spellingShingle Models of Neural Networks III Association, Generalization, and Representation
Physics
Statistical Physics, Dynamical Systems and Complexity
title Models of Neural Networks III Association, Generalization, and Representation
title_auth Models of Neural Networks III Association, Generalization, and Representation
title_exact_search Models of Neural Networks III Association, Generalization, and Representation
title_full Models of Neural Networks III Association, Generalization, and Representation edited by Eytan Domany, J. Leo Hemmen, Klaus Schulten
title_fullStr Models of Neural Networks III Association, Generalization, and Representation edited by Eytan Domany, J. Leo Hemmen, Klaus Schulten
title_full_unstemmed Models of Neural Networks III Association, Generalization, and Representation edited by Eytan Domany, J. Leo Hemmen, Klaus Schulten
title_short Models of Neural Networks III
title_sort models of neural networks iii association generalization and representation
title_sub Association, Generalization, and Representation
topic Physics
Statistical Physics, Dynamical Systems and Complexity
topic_facet Physics
Statistical Physics, Dynamical Systems and Complexity
url https://doi.org/10.1007/978-1-4612-0723-8
work_keys_str_mv AT domanyeytan modelsofneuralnetworksiiiassociationgeneralizationandrepresentation
AT hemmenjleo modelsofneuralnetworksiiiassociationgeneralizationandrepresentation
AT schultenklaus modelsofneuralnetworksiiiassociationgeneralizationandrepresentation