Data architecture a primer for the data scientist ; big data, data warehouse and data vault
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam u.a.
Elsevier Morgan Kaufman
2015
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042363133 | ||
003 | DE-604 | ||
005 | 20150702 | ||
007 | t| | ||
008 | 150216s2015 xx ad|| |||| 00||| eng d | ||
020 | |a 9780128020449 |9 978-0-12-802044-9 | ||
035 | |a (OCoLC)905084694 | ||
035 | |a (DE-599)BVBBV042363133 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-473 |a DE-2070s |a DE-573 |a DE-92 | ||
082 | 0 | |a 005.745 | |
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
100 | 1 | |a Inmon, William H. |d 1945- |e Verfasser |0 (DE-588)113317662 |4 aut | |
245 | 1 | 0 | |a Data architecture |b a primer for the data scientist ; big data, data warehouse and data vault |c W.H. Inmon ; Daniel Linstedt |
264 | 1 | |a Amsterdam u.a. |b Elsevier Morgan Kaufman |c 2015 | |
300 | |a XXI, 355 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes index | ||
500 | |a Corporate data -- The data infrastructure -- The "great divide" -- Demographics of corporate data -- Corporate data analysis -- The life cycle of data : understanding data over time -- A brief history of data -- A brief history of big data -- What is big data? -- Parallel processing -- Unstructured data -- Contextualizing repetitive unstructured data -- Textual disambiguation -- Taxonomies -- A brief history of data warehouse -- Integrated corporate data -- Historical data -- Data marts -- What a data warehouse is not -- Introduction to data vault -- Introduction to data vault modeling -- Introduction to data vault architecture -- Introduction to data vault methodology -- Introduction to data vault implementation -- The operational environment : a short history -- The standard work unit -- Data modeling for the structured environment -- Metadata -- Data governance of structured data -- A brief history of data architecture -- Big data/existing systems interface -- The data warehouse/operational environment interface -- Data architecture : a high-level perspective -- Repetitive analytics : some basics -- Analyzing repetitive data -- Repetitive analysis -- Nonrepetitive data -- Mapping -- Analytics from nonrepetitive data -- Operational analytics -- Operational analytics -- Personal analytics -- A composite data architecture | ||
650 | 4 | |a Data warehousing | |
650 | 4 | |a Big data | |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data-Warehouse-Konzept |0 (DE-588)4406462-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Softwarearchitektur |0 (DE-588)4121677-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 1 | |a Data-Warehouse-Konzept |0 (DE-588)4406462-7 |D s |
689 | 0 | 2 | |a Softwarearchitektur |0 (DE-588)4121677-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Linstedt, Daniel |e Sonstige |0 (DE-588)1068367636 |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027799548&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027799548 |
Datensatz im Suchindex
_version_ | 1819604519478099968 |
---|---|
adam_text | Contents
VU
CONTENTS
Preface
........................................................................................................xvii
About the Authors
......................................................................................xxi
Chapter
1.1
Corporate Data
..................................................................................1
The Totality of Data Across the Corporation
...............................................1
Dividing Unstructured Data
..........................................................................2
Business Relevancy
.......................................................................................3
Big Data
..........................................................................................................4
The Great Divide
............................................................................................4
The Continental Divide
..................................................................................6
The Complete Picture
....................................................................................6
Chapter
1.2
The Data Infrastructure
....................................................................9
Two Types of Repetitive Data
.......................................................................9
Repetitive Structured Data
............................................................................9
Repetitive Big Data
......................................................................................10
The Two Infrastructures
..............................................................................12
What s being Optimized?
............................................................................12
Comparing the Two Infrastructures
...........................................................12
Chapter
1.3
The Great Divide
.........................................................................15
Classifying Corporate Data
.........................................................................15
The Great Divide
......................................................................................15
Repetitive Unstructured Data
.....................................................................16
Nonrepetitive Unstructured Data
...............................................................17
Different Worlds
.......................................................................................... 19
Chapter
1.4
Demographics of Corporate Data
................................................21
Chapter
1.5
Corporate Data Analysis
................................................................27
Chapter
1.6
The Life Cycle of Data
-
Understanding Data Over Time
........33
VIII Contents
Chapter
1.7
A Brief History of Data
....................................................................39
Paper Tape and Punch Cards
......................................................................39
Magnetic Tapes
............................................................................................
39
Disk Storage
.................................................................................................
40
Database Management System
.................................................................40
Coupled Processors
.....................................................................................41
Online Transaction Processing
...................................................................41
Data Warehouse
..........................................................................................42
Parallel Data Management
..........................................................................42
Data Vault
.....................................................................................................43
Big Data
........................................................................................................43
The Great Divide
..........................................................................................44
Chapter
ZI
A Brief History of Big Data
.............................................................45
An Analogy
-
Taking the High Ground
......................................................45
Taking the High Ground
..............................................................................45
Standardization with the
360......................................................................46
Online Transaction Processing
...................................................................47
Enter Teradata and Massively Parallel Processing
...................................47
Then Came Hadoop and Big Data
..............................................................48
IBM and Hadoop
..........................................................................................48
Holding the High Ground
............................................................................48
Chapter
12
What is Big Data?
............................................................................49
Another Definition
.......................................................................................49
Large Volumes
.............................................................................................49
Inexpensive Storage
....................................................................................50
The Roman Census Approach
......................................... 50
Unstructured Data
..........................................................
51
Data in Big Data
....................................................] ..............................52
Context in Repetitive Data
......................................
ZZZZZ.
....................53
Nonrepetitive Data
..........................................
ZZZZZ.
............................53
Context in Nonrepetitive Data
.......................
ZZZZZZZ.
......................54
Chapter Z3 Parallel Processing
.........................................................................57
Contents
IX
Chapter
2.4
Unstructured Data
............................................................................63
Textual Information Everywhere
................................................................63
Decisions Based on Structured Data
..........................................................63
The Business Value Proposition
.................................................................64
Repetitive and Nonrepetitive Unstructured Information
..........................65
Ease of Analysis
...........................................................................................66
Contextualization
.........................................................................................67
Some Approaches to Contextualization
....................................................68
MapReduce
..................................................................................................69
Manual Analysis
..........................................................................................70
Chapter
2.5
Contextualizing Repetitive Unstructured Data
...........................71
Parsing Repetitive Unstructured Data
........................................................71
Recasting the Output Data
..........................................................................71
Chapter
2.6
Textual Disambiguation
.................................................................73
From Narrative into an Analytical Database
.............................................73
Input into Textual Disambiguation
.............................................................74
Mapping
.......................................................................................................75
Input/Output
.................................................................................................76
Document Fracturing/Named Value Processing
.......................................77
Preprocessing a Document
.........................................................................77
Emails
-
A Special Case
..............................................................................78
Spreadsheets
...............................................................................................79
Report Decompilation
.................................................................................79
Chapter
2.7
Taxonomies
.......................................................................................83
Data Models and Taxonomies
....................................................................83
Applicability of Taxonomies
.......................................................................85
What is a Taxonomy?
..................................................................................85
Taxonomies in Multiple Languages
...........................................................86
Dynamics of Taxonomies and Textual Disambiguation
..........................87
Taxonomies and Textual Disambiguation
-
Separate Technologies
......88
Different Types of Taxonomies
..................................................................89
Taxonomies
-
Maintenance Over Time
.....................................................89
X
Contents
Chapter
3.1
A Brief History of Data Warehouse
..............................................91
Early Applications
........................................................................................
91
Online Applications
.....................................................................................
91
Extract Programs
.........................................................................................
92
4GL Technology
...........................................................................................
92
Personalcomputers....................................................................................
94
Spreadsheets
...............................................................................................
94
Integrity of Data
...........................................................................................
95
Spider-WebSystems
...................................................................................95
The Maintenance Backlog
...........................................................................96
The Data Warehouse
...................................................................................97
To an Architected Environment
..................................................................98
To the
CIF
.....................................................................................................98
DW2.0
........................................................................................................100
Chapter
32
Integrated Corporate Data
............................................................101
Many Applications
.....................................................................................101
Looking Across the Corporation
...............................................................101
More Than One Analyst
............................................................................104
ETL Technology
.........................................................................................104
The Challenges of Integration
..................................................................105
The Benefits of a Data Warehouse
...........................................................107
The Granular Perspective
..........................................................................108
Chapter
3.3
Historical Data
...............................................................................
Ill
Chapter
3.4
Data Marts
.......................................................................................115
Granular Data
............................................................................................. 115
Relational Database Design
...................................................................... 115
The Data Mart
.........................................................
ľZZZ!!!ZZZľZi16
Key Performance Indicators
......................................................
ZZZZ.117
The Dimensional Model
........................................
..............u
117
Combining the Data Warehouse and Data Marts
..............................
Z.
118
Chapter IS The Operational Data Store
.........................................................121
Online Transaction Processing on Integrated Data
.......
Z......
..................121
The Operational Data Store
.............................. ................
^
ODS
and the Data Warehouse
.......
.ZZ
..................................................123
Contents
XI
ODS
Classes
...............................................................................................124
External Updates into the
ODS
.................................................................125
The ODS/Data Warehouse Interface
........................................................126
Chapter
3.6
What a Data Warehouse is Not
...................................................127
A Simple Data Warehouse Architecture
..................................................127
Online High-Performance Transaction Processing in the
Data Warehouse
........................................................................................127
Integrity of Data
.........................................................................................128
The Data Warehouse Workload
................................................................129
Statistical Processing from the Data Warehouse
....................................130
The Frequency of Statistical Processing
..................................................130
The Exploration Warehouse
.....................................................................131
Chapter
4.1
Introduction to Data Vault
............................................................133
Data Vault
2.0
Modeling
............................................................................134
Data Vault
2.0
Methodology Defined
.......................................................135
Data Vault
2.0
Architecture
.......................................................................135
Data Vault
2.0
Implementation
.................................................................135
Business Benefits of Data Vault
2.0..........................................................135
Data Vault
1.0.............................................................................................137
Chapter
4.2
Introduction to Data Vault Modeling
..........................................139
A Data Vault Model Concept
.....................................................................139
Data Vault Model Defined
.........................................................................139
Components of a Data Vault Model
.........................................................140
Data Vault and Data Warehousing
...........................................................141
Translating to Data Vault Modeling
.........................................................142
Data Restructure
........................................................................................144
Basic Rules of Data Vault Modeling
.........................................................144
Why We Need Many-to-Many Link Structures
........................................144
Hash keys Instead of Sequence Numbers
...............................................145
Chapter
4.3
Introduction to Data Vault Architecture
....................................149
Data Vault
2.0
Architecture
.......................................................................149
How NoSQL Fits into the Architecture
.....................................................149
Data Vault
2.0
Architecture Objectives
....................................................151
XU Contents
Data
Vault
2.0
Modeling Objective
...........................................................
Hard and Soft Business Rules
..................................................................
Managed SSBI and the Architecture
........................................................
153
Chapter
4.4
Introduction to Data Vault Methodology
...................................155
Data Vault
2.0
Methodology Overview
....................................................155
CMMI and Data Vault
2.0
Methodology
...................................................155
CMMI Versus Agility
..................................................................................
Ί58
Project Management Practices and SDLC Versus CMMI and Agile
......159
Six Sigma and Data Vault
2.0
Methodology
...........................................160
Total Quality Management
.......................................................................161
Chapter
4.5
Introduction to Data Vault Implementation
...............................163
Implementation Overview
........................................................................163
The Importance of Patterns
......................................................................163
Reengineering
and Big Data
.....................................................................164
Virtualize Our Data Marts
..........................................................................166
Managed Self-Service Bl
...........................................................................167
Chapter
5.1
The Operational Environment
-
A Short History
......................169
Commercial Uses of the Computer
..........................................................169
The First Applications
................................................................................170
Ed Yourdon and the Structured Revolution
............................................170
System Development
Ufe
Cycle
...............................................................171
Disk Technology
........................................................................................171
Enter the Database Management System
...............................................172
Response Time and Availability
...............................................................173
Corporate Computing Today
....................................................................175
Chapter
52
The Standard Work Unit
...............................................................177
Elements of Response Time
.....................................................................177
An Hourglass Analogy
..............................................................................178
The Racetrack Analogy
..............................................................................179
Your Vehicle Runs as Fast as the Vehicle in Front of It
..........................179
The Standard Work Unit
...........................................................................180
The Service Level Agreement
...................................................................180
Contents XIII
Chapter
5.3 Data
Modeling for the Structured Environment
.......................181
The Purpose of the Road Map
..................................................................181
Granular Data Only
....................................................................................181
The Entity Relationship Diagram
..............................................................182
The
DIS
.......................................................................................................183
Physical Database Design
.........................................................................185
Relating the Different Levels of the Data Model
.....................................185
An Example of the Linkage
.......................................................................186
Generic Data Models
.................................................................................188
Operational Data Models and Data Warehouse Data Models
...............188
Chapter^ Metadata
.........................................................................................189
Typical Metadata
.......................................................................................189
The Repository
...........................................................................................189
Using Metadata
..........................................................................................191
Analytical Uses of Metadata
.....................................................................192
Looking at Multiple Systems
....................................................................193
The Lineage of Data
...................................................................................193
Comparing Existing
Systemsto
Proposed Systems
..............................193
Chapter
5.5
Data Governance of Structured Data
.........................................195
A Corporate Activity
..................................................................................195
Motivations for Data Governance
............................................................195
Repairing Data
...........................................................................................195
Granular, Detailed Data
.............................................................................197
Documentation
..........................................................................................197
Data Stewardship
......................................................................................197
Chapter
6.1
A Brief History of Data Architecture
..........................................199
Chapter
6.2
Big Data/Existing Systems Interface
.........................................211
The Big Data/Existing Systems Interface
.................................................211
The Repetitive Raw Big Data/Existing Systems Interface
......................211
Exception-Based Data
...............................................................................213
The Nonrepetitive Raw Big Data/Existing Systems Interface
................214
Into the Existing Systems Environment
..................................................215
The Context-Enriched Big Data Environment
.....................................216
Analyzing Structured Data/Unstructured Data Together
.......................218
xhf Contents
Chapter
6.3
The Data Warehouse/Operational Environment Interface
......219
The Operational/Data Warehouse Interface
............................................219
The Classical ETL Interface
.......................................................................
219
The Operational Data Store/ETL Interface
...............................................220
The Staging Area
.......................................................................................
221
Changed Data Capture
..............................................................................
222
Inline Transformation
................................................................................222
ELT
Processing
...........................................................................................223
Chapter
6.4
Data Architecture
-
A High-Level Perspective
........................225
A High-Level perspective
..........................................................................225
Redundancy
...............................................................................................225
The System of Record
...............................................................................226
Different Communities
..............................................................................229
Chapter
7.1
Repetitive Analytics
-
Some Basics
..........................................231
Different Kinds of Analysis
.......................................................................231
Looking for Patterns
..................................................................................232
Heuristic Processing
..................................................................................234
The Sandbox
..............................................................................................237
The Normal Profile
................................................................................238
Distillation, Filtering
..................................................................................238
Subsetting Data
.........................................................................................240
Filtering Data
..............................................................................................242
Repetitive Data and Context
.....................................................................243
Linking Repetitive Records
.......................................................................244
Log Tape Records
......................................................................................245
Analyzing Points of Data
...........................................................................246
Data Over Time
..........................................................................................247
Chapter
12
Analyzing Repetitive Data
............................................................249
Log Data
.....................................................................................
ZZ.......250
Active/Passive Indexing of Data
...............................................................252
Summary/Detailed Data
............................................................!*, !... ..*! 253
Metadata in Big Data
.........................................................!!!!!! ! !!!!!. !!!!!! 255
Linking Data
..........................................................................
,..*Iľ
ľ
256
Contents
XV
Chapter
7.3
Repetitive Analysis
........................................................................259
Internal, External Data
...............................................................................259
Universal Identifiers
..................................................................................259
Security
.......................................................................................................261
Filtering, Distillation
..................................................................................263
Archiving Results
.......................................................................................264
Metrics
........................................................................................................266
Chapter
8.1
Nonrepetitive Data
........................................................................267
Inline Contextualization
.............................................................................270
Taxonomy/Ontology Processing
..............................................................271
Custom Variables
.......................................................................................272
Homographie
Resolution
..........................................................................273
Acronym Resolution
..................................................................................275
Negation Analysis
......................................................................................275
Numeric Tagging
.......................................................................................276
Date Tagging
..............................................................................................277
Date Standardization
.................................................................................277
List Processing
...........................................................................................278
Associative Word Processing
...................................................................279
Stop Word Processing
...............................................................................280
Word Stemming
........................................................................................280
Document Metadata
..................................................................................281
Document Classification
...........................................................................282
Proximity Analysis
.....................................................................................282
Functional Sequencing within Textual ETL
.............................................283
Internal Referential Integrity
.....................................................................283
Preprocessing, Postprocessing
................................................................285
Chapter
8.2
Mapping
...........................................................................................287
Chapter
8.3
Analytics from Nonrepetitive Data
.............................................291
Call Center Information
.............................................................................291
Medical Records
........................................................................................300
XVI Contents
Chapter
9.1
Operational Analytics
...................................................................305
Transaction Response Time
.....................................................................307
Chapter
10.1
Operational Analytics
.................................................................313
Chapter
11.1
Personal Analytics
......................................................................323
Chapter
12.1
A Composite Data Architecture
................................................329
Glossary
..................................................................................................................335
Index
.......................................................................................................................345
|
any_adam_object | 1 |
author | Inmon, William H. 1945- |
author_GND | (DE-588)113317662 (DE-588)1068367636 |
author_facet | Inmon, William H. 1945- |
author_role | aut |
author_sort | Inmon, William H. 1945- |
author_variant | w h i wh whi |
building | Verbundindex |
bvnumber | BV042363133 |
classification_rvk | ST 530 |
ctrlnum | (OCoLC)905084694 (DE-599)BVBBV042363133 |
dewey-full | 005.745 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.745 |
dewey-search | 005.745 |
dewey-sort | 15.745 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03118nam a2200433 c 4500</leader><controlfield tag="001">BV042363133</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150702 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">150216s2015 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128020449</subfield><subfield code="9">978-0-12-802044-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905084694</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042363133</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-2070s</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.745</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Inmon, William H.</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113317662</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data architecture</subfield><subfield code="b">a primer for the data scientist ; big data, data warehouse and data vault</subfield><subfield code="c">W.H. Inmon ; Daniel Linstedt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam u.a.</subfield><subfield code="b">Elsevier Morgan Kaufman</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 355 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Corporate data -- The data infrastructure -- The "great divide" -- Demographics of corporate data -- Corporate data analysis -- The life cycle of data : understanding data over time -- A brief history of data -- A brief history of big data -- What is big data? -- Parallel processing -- Unstructured data -- Contextualizing repetitive unstructured data -- Textual disambiguation -- Taxonomies -- A brief history of data warehouse -- Integrated corporate data -- Historical data -- Data marts -- What a data warehouse is not -- Introduction to data vault -- Introduction to data vault modeling -- Introduction to data vault architecture -- Introduction to data vault methodology -- Introduction to data vault implementation -- The operational environment : a short history -- The standard work unit -- Data modeling for the structured environment -- Metadata -- Data governance of structured data -- A brief history of data architecture -- Big data/existing systems interface -- The data warehouse/operational environment interface -- Data architecture : a high-level perspective -- Repetitive analytics : some basics -- Analyzing repetitive data -- Repetitive analysis -- Nonrepetitive data -- Mapping -- Analytics from nonrepetitive data -- Operational analytics -- Operational analytics -- Personal analytics -- A composite data architecture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data warehousing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data-Warehouse-Konzept</subfield><subfield code="0">(DE-588)4406462-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Softwarearchitektur</subfield><subfield code="0">(DE-588)4121677-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Data-Warehouse-Konzept</subfield><subfield code="0">(DE-588)4406462-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Softwarearchitektur</subfield><subfield code="0">(DE-588)4121677-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Linstedt, Daniel</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1068367636</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027799548&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027799548</subfield></datafield></record></collection> |
id | DE-604.BV042363133 |
illustrated | Illustrated |
indexdate | 2024-12-24T04:21:19Z |
institution | BVB |
isbn | 9780128020449 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027799548 |
oclc_num | 905084694 |
open_access_boolean | |
owner | DE-473 DE-BY-UBG DE-2070s DE-573 DE-92 |
owner_facet | DE-473 DE-BY-UBG DE-2070s DE-573 DE-92 |
physical | XXI, 355 S. Ill., graph. Darst. |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Elsevier Morgan Kaufman |
record_format | marc |
spellingShingle | Inmon, William H. 1945- Data architecture a primer for the data scientist ; big data, data warehouse and data vault Data warehousing Big data Big Data (DE-588)4802620-7 gnd Data-Warehouse-Konzept (DE-588)4406462-7 gnd Softwarearchitektur (DE-588)4121677-5 gnd |
subject_GND | (DE-588)4802620-7 (DE-588)4406462-7 (DE-588)4121677-5 |
title | Data architecture a primer for the data scientist ; big data, data warehouse and data vault |
title_auth | Data architecture a primer for the data scientist ; big data, data warehouse and data vault |
title_exact_search | Data architecture a primer for the data scientist ; big data, data warehouse and data vault |
title_full | Data architecture a primer for the data scientist ; big data, data warehouse and data vault W.H. Inmon ; Daniel Linstedt |
title_fullStr | Data architecture a primer for the data scientist ; big data, data warehouse and data vault W.H. Inmon ; Daniel Linstedt |
title_full_unstemmed | Data architecture a primer for the data scientist ; big data, data warehouse and data vault W.H. Inmon ; Daniel Linstedt |
title_short | Data architecture |
title_sort | data architecture a primer for the data scientist big data data warehouse and data vault |
title_sub | a primer for the data scientist ; big data, data warehouse and data vault |
topic | Data warehousing Big data Big Data (DE-588)4802620-7 gnd Data-Warehouse-Konzept (DE-588)4406462-7 gnd Softwarearchitektur (DE-588)4121677-5 gnd |
topic_facet | Data warehousing Big data Big Data Data-Warehouse-Konzept Softwarearchitektur |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027799548&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT inmonwilliamh dataarchitectureaprimerforthedatascientistbigdatadatawarehouseanddatavault AT linstedtdaniel dataarchitectureaprimerforthedatascientistbigdatadatawarehouseanddatavault |