Attractors of evolution equations

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Babin, A. V., (Anatoliĭ Vladimirovich) (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Amsterdam North-Holland 1992
Schriftenreihe:Studies in mathematics and its applications v. 25
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042317877
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150129s1992 xx o|||| 00||| eng d
020 |a 9780444890047  |9 978-0-444-89004-7 
020 |a 0444890041  |9 0-444-89004-1 
035 |a (ZDB-33-EBS)ocn316572125 
035 |a (OCoLC)316572125 
035 |a (DE-599)BVBBV042317877 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046 
082 0 |a 515/.353  |2 22 
100 1 |a Babin, A. V., (Anatoliĭ Vladimirovich)  |e Verfasser  |4 aut 
240 1 0 |a Attraktory ėvoli͡ut͡sionnykh uravneniĭ 
245 1 0 |a Attractors of evolution equations  |c A.V. Babin and M.I. Vishik 
264 1 |a Amsterdam  |b North-Holland  |c 1992 
300 |a 1 Online-Ressource (x, 532 p.) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Studies in mathematics and its applications  |v v. 25 
500 |a Translation of: Attraktory ėvoli͡ut͡sionnykh uravneniĭ 
500 |a Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - & infin; all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - + & infin;, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - & infin; of solutions for evolutionary equations 
500 |a Includes bibliographical references (p. 505-526) and index 
650 4 |a Navier-Stokes, Équations de / Solutions numériques 
650 7 |a Navier-Stokes, équations / Solutions numériques  |2 ram 
650 7 |a Attractors (Mathematics)  |2 fast 
650 7 |a Navier-Stokes equations / Numerical solutions  |2 fast 
650 4 |a Navier-Stokes equations  |x Numerical solutions 
650 4 |a Attractors (Mathematics) 
650 0 7 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Navier-Stokes-Gleichung  |0 (DE-588)4041456-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Attraktor  |0 (DE-588)4140563-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Evolutionsgleichung  |0 (DE-588)4129061-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Navier-Stokes-Gleichung  |0 (DE-588)4041456-5  |D s 
689 0 1 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Evolutionsgleichung  |0 (DE-588)4129061-6  |D s 
689 1 1 |a Attraktor  |0 (DE-588)4140563-8  |D s 
689 1 |8 2\p  |5 DE-604 
700 1 |a Vishik, M. I.  |e Sonstige  |4 oth 
856 4 0 |u http://www.sciencedirect.com/science/book/9780444890047  |x Verlag  |3 Volltext 
912 |a ZDB-33-ESD 
912 |a ZDB-33-EBS 
940 1 |q FAW_PDA_ESD 
940 1 |q FLA_PDA_ESD 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027754868 

Datensatz im Suchindex

_version_ 1819294036325826560
any_adam_object
author Babin, A. V., (Anatoliĭ Vladimirovich)
author_facet Babin, A. V., (Anatoliĭ Vladimirovich)
author_role aut
author_sort Babin, A. V., (Anatoliĭ Vladimirovich)
author_variant a v a v b avav avavb
building Verbundindex
bvnumber BV042317877
collection ZDB-33-ESD
ZDB-33-EBS
ctrlnum (ZDB-33-EBS)ocn316572125
(OCoLC)316572125
(DE-599)BVBBV042317877
dewey-full 515/.353
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.353
dewey-search 515/.353
dewey-sort 3515 3353
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04112nam a2200637zcb4500</leader><controlfield tag="001">BV042317877</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1992 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444890047</subfield><subfield code="9">978-0-444-89004-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444890041</subfield><subfield code="9">0-444-89004-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316572125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316572125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317877</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Babin, A. V., (Anatoliĭ Vladimirovich)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Attraktory ėvoli͡ut͡sionnykh uravneniĭ</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Attractors of evolution equations</subfield><subfield code="c">A.V. Babin and M.I. Vishik</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 532 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in mathematics and its applications</subfield><subfield code="v">v. 25</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Translation of: Attraktory ėvoli͡ut͡sionnykh uravneniĭ</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - &amp; infin; all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - + &amp; infin;, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - &amp; infin; of solutions for evolutionary equations</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 505-526) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Navier-Stokes, Équations de / Solutions numériques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Navier-Stokes, équations / Solutions numériques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Attractors (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Navier-Stokes equations / Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Navier-Stokes equations</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attractors (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Navier-Stokes-Gleichung</subfield><subfield code="0">(DE-588)4041456-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Attraktor</subfield><subfield code="0">(DE-588)4140563-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolutionsgleichung</subfield><subfield code="0">(DE-588)4129061-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Navier-Stokes-Gleichung</subfield><subfield code="0">(DE-588)4041456-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Evolutionsgleichung</subfield><subfield code="0">(DE-588)4129061-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Attraktor</subfield><subfield code="0">(DE-588)4140563-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vishik, M. I.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444890047</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754868</subfield></datafield></record></collection>
id DE-604.BV042317877
illustrated Not Illustrated
indexdate 2024-12-24T04:19:56Z
institution BVB
isbn 9780444890047
0444890041
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027754868
oclc_num 316572125
open_access_boolean
owner DE-1046
owner_facet DE-1046
physical 1 Online-Ressource (x, 532 p.)
psigel ZDB-33-ESD
ZDB-33-EBS
FAW_PDA_ESD
FLA_PDA_ESD
publishDate 1992
publishDateSearch 1992
publishDateSort 1992
publisher North-Holland
record_format marc
series2 Studies in mathematics and its applications
spelling Babin, A. V., (Anatoliĭ Vladimirovich) Verfasser aut
Attraktory ėvoli͡ut͡sionnykh uravneniĭ
Attractors of evolution equations A.V. Babin and M.I. Vishik
Amsterdam North-Holland 1992
1 Online-Ressource (x, 532 p.)
txt rdacontent
c rdamedia
cr rdacarrier
Studies in mathematics and its applications v. 25
Translation of: Attraktory ėvoli͡ut͡sionnykh uravneniĭ
Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - & infin; all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - + & infin;, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - & infin; of solutions for evolutionary equations
Includes bibliographical references (p. 505-526) and index
Navier-Stokes, Équations de / Solutions numériques
Navier-Stokes, équations / Solutions numériques ram
Attractors (Mathematics) fast
Navier-Stokes equations / Numerical solutions fast
Navier-Stokes equations Numerical solutions
Attractors (Mathematics)
Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf
Navier-Stokes-Gleichung (DE-588)4041456-5 gnd rswk-swf
Attraktor (DE-588)4140563-8 gnd rswk-swf
Evolutionsgleichung (DE-588)4129061-6 gnd rswk-swf
Navier-Stokes-Gleichung (DE-588)4041456-5 s
Numerisches Verfahren (DE-588)4128130-5 s
1\p DE-604
Evolutionsgleichung (DE-588)4129061-6 s
Attraktor (DE-588)4140563-8 s
2\p DE-604
Vishik, M. I. Sonstige oth
http://www.sciencedirect.com/science/book/9780444890047 Verlag Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Babin, A. V., (Anatoliĭ Vladimirovich)
Attractors of evolution equations
Navier-Stokes, Équations de / Solutions numériques
Navier-Stokes, équations / Solutions numériques ram
Attractors (Mathematics) fast
Navier-Stokes equations / Numerical solutions fast
Navier-Stokes equations Numerical solutions
Attractors (Mathematics)
Numerisches Verfahren (DE-588)4128130-5 gnd
Navier-Stokes-Gleichung (DE-588)4041456-5 gnd
Attraktor (DE-588)4140563-8 gnd
Evolutionsgleichung (DE-588)4129061-6 gnd
subject_GND (DE-588)4128130-5
(DE-588)4041456-5
(DE-588)4140563-8
(DE-588)4129061-6
title Attractors of evolution equations
title_alt Attraktory ėvoli͡ut͡sionnykh uravneniĭ
title_auth Attractors of evolution equations
title_exact_search Attractors of evolution equations
title_full Attractors of evolution equations A.V. Babin and M.I. Vishik
title_fullStr Attractors of evolution equations A.V. Babin and M.I. Vishik
title_full_unstemmed Attractors of evolution equations A.V. Babin and M.I. Vishik
title_short Attractors of evolution equations
title_sort attractors of evolution equations
topic Navier-Stokes, Équations de / Solutions numériques
Navier-Stokes, équations / Solutions numériques ram
Attractors (Mathematics) fast
Navier-Stokes equations / Numerical solutions fast
Navier-Stokes equations Numerical solutions
Attractors (Mathematics)
Numerisches Verfahren (DE-588)4128130-5 gnd
Navier-Stokes-Gleichung (DE-588)4041456-5 gnd
Attraktor (DE-588)4140563-8 gnd
Evolutionsgleichung (DE-588)4129061-6 gnd
topic_facet Navier-Stokes, Équations de / Solutions numériques
Navier-Stokes, équations / Solutions numériques
Attractors (Mathematics)
Navier-Stokes equations / Numerical solutions
Navier-Stokes equations Numerical solutions
Numerisches Verfahren
Navier-Stokes-Gleichung
Attraktor
Evolutionsgleichung
url http://www.sciencedirect.com/science/book/9780444890047
work_keys_str_mv AT babinavanatoliivladimirovich attraktoryevoliutsionnykhuravnenii
AT vishikmi attraktoryevoliutsionnykhuravnenii
AT babinavanatoliivladimirovich attractorsofevolutionequations
AT vishikmi attractorsofevolutionequations