Geometry of Riemann surfaces and Teichmüller spaces
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland
1992
|
Schriftenreihe: | North-Holland mathematics studies
169 |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317764 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1992 |||| o||u| ||||||eng d | ||
020 | |a 9780444888464 |9 978-0-444-88846-4 | ||
020 | |a 0444888462 |9 0-444-88846-2 | ||
035 | |a (ZDB-33-EBS)ocn316568559 | ||
035 | |a (OCoLC)316568559 | ||
035 | |a (DE-599)BVBBV042317764 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 515/.223 |2 22 | |
100 | 1 | |a Seppälä, Mika |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry of Riemann surfaces and Teichmüller spaces |c Mika Seppälä, Tuomas Sorvali |
264 | 1 | |a Amsterdam |b North-Holland |c 1992 | |
300 | |a 1 Online-Ressource (263 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a North-Holland mathematics studies |v 169 | |
500 | |a The moduli problem is to describe the structure of the space of isomorphism classes of Riemann surfaces of a given topological type. This space is known as the moduli space and has been at the center of pure mathematics for more than a hundred years. In spite of its age, this field still attracts a lot of attention, the smooth compact Riemann surfaces being simply complex projective algebraic curves. Therefore the moduli space of compact Riemann surfaces is also the moduli space of complex algebraic curves. This space lies on the intersection of many fields of mathematics and may be studied from many different points of view. The aim of this monograph is to present information about the structure of the moduli space using as concrete and elementary methods as possible. This simple approach leads to a rich theory and opens a new way of treating the moduli problem, putting new life into classical methods that were used in the study of moduli problems in the 1920s | ||
500 | |a Includes bibliographical references (p. 249-257) and index | ||
650 | 7 | |a Riemann, surfaces de |2 ram | |
650 | 7 | |a Teichmüller, espaces de |2 ram | |
650 | 7 | |a Riemann surfaces |2 fast | |
650 | 7 | |a Teichmüller spaces |2 fast | |
650 | 4 | |a Riemann surfaces | |
650 | 4 | |a Teichmüller spaces | |
650 | 0 | 7 | |a Riemannscher Raum |0 (DE-588)4128295-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Teichmüller-Raum |0 (DE-588)4131425-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsche Fläche |0 (DE-588)4049991-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannscher Raum |0 (DE-588)4128295-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Teichmüller-Raum |0 (DE-588)4131425-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Riemannsche Fläche |0 (DE-588)4049991-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Sorvali, Tuomas |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444888464 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754755 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152914570117120 |
---|---|
any_adam_object | |
author | Seppälä, Mika |
author_facet | Seppälä, Mika |
author_role | aut |
author_sort | Seppälä, Mika |
author_variant | m s ms |
building | Verbundindex |
bvnumber | BV042317764 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316568559 (OCoLC)316568559 (DE-599)BVBBV042317764 |
dewey-full | 515/.223 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.223 |
dewey-search | 515/.223 |
dewey-sort | 3515 3223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03183nmm a2200601zcb4500</leader><controlfield tag="001">BV042317764</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444888464</subfield><subfield code="9">978-0-444-88846-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444888462</subfield><subfield code="9">0-444-88846-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316568559</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316568559</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317764</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.223</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Seppälä, Mika</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry of Riemann surfaces and Teichmüller spaces</subfield><subfield code="c">Mika Seppälä, Tuomas Sorvali</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (263 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematics studies</subfield><subfield code="v">169</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The moduli problem is to describe the structure of the space of isomorphism classes of Riemann surfaces of a given topological type. This space is known as the moduli space and has been at the center of pure mathematics for more than a hundred years. In spite of its age, this field still attracts a lot of attention, the smooth compact Riemann surfaces being simply complex projective algebraic curves. Therefore the moduli space of compact Riemann surfaces is also the moduli space of complex algebraic curves. This space lies on the intersection of many fields of mathematics and may be studied from many different points of view. The aim of this monograph is to present information about the structure of the moduli space using as concrete and elementary methods as possible. This simple approach leads to a rich theory and opens a new way of treating the moduli problem, putting new life into classical methods that were used in the study of moduli problems in the 1920s</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 249-257) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemann, surfaces de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teichmüller, espaces de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemann surfaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teichmüller spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Teichmüller spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Teichmüller-Raum</subfield><subfield code="0">(DE-588)4131425-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Fläche</subfield><subfield code="0">(DE-588)4049991-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Teichmüller-Raum</subfield><subfield code="0">(DE-588)4131425-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Riemannsche Fläche</subfield><subfield code="0">(DE-588)4049991-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sorvali, Tuomas</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444888464</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754755</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317764 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:17Z |
institution | BVB |
isbn | 9780444888464 0444888462 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754755 |
oclc_num | 316568559 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (263 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | North-Holland |
record_format | marc |
series2 | North-Holland mathematics studies |
spelling | Seppälä, Mika Verfasser aut Geometry of Riemann surfaces and Teichmüller spaces Mika Seppälä, Tuomas Sorvali Amsterdam North-Holland 1992 1 Online-Ressource (263 p.) txt rdacontent c rdamedia cr rdacarrier North-Holland mathematics studies 169 The moduli problem is to describe the structure of the space of isomorphism classes of Riemann surfaces of a given topological type. This space is known as the moduli space and has been at the center of pure mathematics for more than a hundred years. In spite of its age, this field still attracts a lot of attention, the smooth compact Riemann surfaces being simply complex projective algebraic curves. Therefore the moduli space of compact Riemann surfaces is also the moduli space of complex algebraic curves. This space lies on the intersection of many fields of mathematics and may be studied from many different points of view. The aim of this monograph is to present information about the structure of the moduli space using as concrete and elementary methods as possible. This simple approach leads to a rich theory and opens a new way of treating the moduli problem, putting new life into classical methods that were used in the study of moduli problems in the 1920s Includes bibliographical references (p. 249-257) and index Riemann, surfaces de ram Teichmüller, espaces de ram Riemann surfaces fast Teichmüller spaces fast Riemann surfaces Teichmüller spaces Riemannscher Raum (DE-588)4128295-4 gnd rswk-swf Teichmüller-Raum (DE-588)4131425-6 gnd rswk-swf Riemannsche Fläche (DE-588)4049991-1 gnd rswk-swf Riemannscher Raum (DE-588)4128295-4 s 1\p DE-604 Teichmüller-Raum (DE-588)4131425-6 s 2\p DE-604 Riemannsche Fläche (DE-588)4049991-1 s 3\p DE-604 Sorvali, Tuomas Sonstige oth http://www.sciencedirect.com/science/book/9780444888464 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Seppälä, Mika Geometry of Riemann surfaces and Teichmüller spaces Riemann, surfaces de ram Teichmüller, espaces de ram Riemann surfaces fast Teichmüller spaces fast Riemann surfaces Teichmüller spaces Riemannscher Raum (DE-588)4128295-4 gnd Teichmüller-Raum (DE-588)4131425-6 gnd Riemannsche Fläche (DE-588)4049991-1 gnd |
subject_GND | (DE-588)4128295-4 (DE-588)4131425-6 (DE-588)4049991-1 |
title | Geometry of Riemann surfaces and Teichmüller spaces |
title_auth | Geometry of Riemann surfaces and Teichmüller spaces |
title_exact_search | Geometry of Riemann surfaces and Teichmüller spaces |
title_full | Geometry of Riemann surfaces and Teichmüller spaces Mika Seppälä, Tuomas Sorvali |
title_fullStr | Geometry of Riemann surfaces and Teichmüller spaces Mika Seppälä, Tuomas Sorvali |
title_full_unstemmed | Geometry of Riemann surfaces and Teichmüller spaces Mika Seppälä, Tuomas Sorvali |
title_short | Geometry of Riemann surfaces and Teichmüller spaces |
title_sort | geometry of riemann surfaces and teichmuller spaces |
topic | Riemann, surfaces de ram Teichmüller, espaces de ram Riemann surfaces fast Teichmüller spaces fast Riemann surfaces Teichmüller spaces Riemannscher Raum (DE-588)4128295-4 gnd Teichmüller-Raum (DE-588)4131425-6 gnd Riemannsche Fläche (DE-588)4049991-1 gnd |
topic_facet | Riemann, surfaces de Teichmüller, espaces de Riemann surfaces Teichmüller spaces Riemannscher Raum Teichmüller-Raum Riemannsche Fläche |
url | http://www.sciencedirect.com/science/book/9780444888464 |
work_keys_str_mv | AT seppalamika geometryofriemannsurfacesandteichmullerspaces AT sorvalituomas geometryofriemannsurfacesandteichmullerspaces |