Geometry of Riemann surfaces and Teichmüller spaces

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Seppälä, Mika (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Amsterdam North-Holland 1992
Schriftenreihe:North-Holland mathematics studies 169
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV042317764
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150129s1992 |||| o||u| ||||||eng d
020 |a 9780444888464  |9 978-0-444-88846-4 
020 |a 0444888462  |9 0-444-88846-2 
035 |a (ZDB-33-EBS)ocn316568559 
035 |a (OCoLC)316568559 
035 |a (DE-599)BVBBV042317764 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046 
082 0 |a 515/.223  |2 22 
100 1 |a Seppälä, Mika  |e Verfasser  |4 aut 
245 1 0 |a Geometry of Riemann surfaces and Teichmüller spaces  |c Mika Seppälä, Tuomas Sorvali 
264 1 |a Amsterdam  |b North-Holland  |c 1992 
300 |a 1 Online-Ressource (263 p.) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a North-Holland mathematics studies  |v 169 
500 |a The moduli problem is to describe the structure of the space of isomorphism classes of Riemann surfaces of a given topological type. This space is known as the moduli space and has been at the center of pure mathematics for more than a hundred years. In spite of its age, this field still attracts a lot of attention, the smooth compact Riemann surfaces being simply complex projective algebraic curves. Therefore the moduli space of compact Riemann surfaces is also the moduli space of complex algebraic curves. This space lies on the intersection of many fields of mathematics and may be studied from many different points of view. The aim of this monograph is to present information about the structure of the moduli space using as concrete and elementary methods as possible. This simple approach leads to a rich theory and opens a new way of treating the moduli problem, putting new life into classical methods that were used in the study of moduli problems in the 1920s 
500 |a Includes bibliographical references (p. 249-257) and index 
650 7 |a Riemann, surfaces de  |2 ram 
650 7 |a Teichmüller, espaces de  |2 ram 
650 7 |a Riemann surfaces  |2 fast 
650 7 |a Teichmüller spaces  |2 fast 
650 4 |a Riemann surfaces 
650 4 |a Teichmüller spaces 
650 0 7 |a Riemannscher Raum  |0 (DE-588)4128295-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Teichmüller-Raum  |0 (DE-588)4131425-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Riemannsche Fläche  |0 (DE-588)4049991-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Riemannscher Raum  |0 (DE-588)4128295-4  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Teichmüller-Raum  |0 (DE-588)4131425-6  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Riemannsche Fläche  |0 (DE-588)4049991-1  |D s 
689 2 |8 3\p  |5 DE-604 
700 1 |a Sorvali, Tuomas  |e Sonstige  |4 oth 
856 4 0 |u http://www.sciencedirect.com/science/book/9780444888464  |x Verlag  |3 Volltext 
912 |a ZDB-33-ESD  |a ZDB-33-EBS 
940 1 |q FAW_PDA_ESD 
940 1 |q FLA_PDA_ESD 
999 |a oai:aleph.bib-bvb.de:BVB01-027754755 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

_version_ 1804152914570117120
any_adam_object
author Seppälä, Mika
author_facet Seppälä, Mika
author_role aut
author_sort Seppälä, Mika
author_variant m s ms
building Verbundindex
bvnumber BV042317764
collection ZDB-33-ESD
ZDB-33-EBS
ctrlnum (ZDB-33-EBS)ocn316568559
(OCoLC)316568559
(DE-599)BVBBV042317764
dewey-full 515/.223
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.223
dewey-search 515/.223
dewey-sort 3515 3223
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03183nmm a2200601zcb4500</leader><controlfield tag="001">BV042317764</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444888464</subfield><subfield code="9">978-0-444-88846-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444888462</subfield><subfield code="9">0-444-88846-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316568559</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316568559</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317764</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.223</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Seppälä, Mika</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry of Riemann surfaces and Teichmüller spaces</subfield><subfield code="c">Mika Seppälä, Tuomas Sorvali</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (263 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematics studies</subfield><subfield code="v">169</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The moduli problem is to describe the structure of the space of isomorphism classes of Riemann surfaces of a given topological type. This space is known as the moduli space and has been at the center of pure mathematics for more than a hundred years. In spite of its age, this field still attracts a lot of attention, the smooth compact Riemann surfaces being simply complex projective algebraic curves. Therefore the moduli space of compact Riemann surfaces is also the moduli space of complex algebraic curves. This space lies on the intersection of many fields of mathematics and may be studied from many different points of view. The aim of this monograph is to present information about the structure of the moduli space using as concrete and elementary methods as possible. This simple approach leads to a rich theory and opens a new way of treating the moduli problem, putting new life into classical methods that were used in the study of moduli problems in the 1920s</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 249-257) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemann, surfaces de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teichmüller, espaces de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemann surfaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teichmüller spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Teichmüller spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Teichmüller-Raum</subfield><subfield code="0">(DE-588)4131425-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Fläche</subfield><subfield code="0">(DE-588)4049991-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Teichmüller-Raum</subfield><subfield code="0">(DE-588)4131425-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Riemannsche Fläche</subfield><subfield code="0">(DE-588)4049991-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sorvali, Tuomas</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444888464</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754755</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV042317764
illustrated Not Illustrated
indexdate 2024-07-10T01:18:17Z
institution BVB
isbn 9780444888464
0444888462
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027754755
oclc_num 316568559
open_access_boolean
owner DE-1046
owner_facet DE-1046
physical 1 Online-Ressource (263 p.)
psigel ZDB-33-ESD
ZDB-33-EBS
FAW_PDA_ESD
FLA_PDA_ESD
publishDate 1992
publishDateSearch 1992
publishDateSort 1992
publisher North-Holland
record_format marc
series2 North-Holland mathematics studies
spelling Seppälä, Mika Verfasser aut
Geometry of Riemann surfaces and Teichmüller spaces Mika Seppälä, Tuomas Sorvali
Amsterdam North-Holland 1992
1 Online-Ressource (263 p.)
txt rdacontent
c rdamedia
cr rdacarrier
North-Holland mathematics studies 169
The moduli problem is to describe the structure of the space of isomorphism classes of Riemann surfaces of a given topological type. This space is known as the moduli space and has been at the center of pure mathematics for more than a hundred years. In spite of its age, this field still attracts a lot of attention, the smooth compact Riemann surfaces being simply complex projective algebraic curves. Therefore the moduli space of compact Riemann surfaces is also the moduli space of complex algebraic curves. This space lies on the intersection of many fields of mathematics and may be studied from many different points of view. The aim of this monograph is to present information about the structure of the moduli space using as concrete and elementary methods as possible. This simple approach leads to a rich theory and opens a new way of treating the moduli problem, putting new life into classical methods that were used in the study of moduli problems in the 1920s
Includes bibliographical references (p. 249-257) and index
Riemann, surfaces de ram
Teichmüller, espaces de ram
Riemann surfaces fast
Teichmüller spaces fast
Riemann surfaces
Teichmüller spaces
Riemannscher Raum (DE-588)4128295-4 gnd rswk-swf
Teichmüller-Raum (DE-588)4131425-6 gnd rswk-swf
Riemannsche Fläche (DE-588)4049991-1 gnd rswk-swf
Riemannscher Raum (DE-588)4128295-4 s
1\p DE-604
Teichmüller-Raum (DE-588)4131425-6 s
2\p DE-604
Riemannsche Fläche (DE-588)4049991-1 s
3\p DE-604
Sorvali, Tuomas Sonstige oth
http://www.sciencedirect.com/science/book/9780444888464 Verlag Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Seppälä, Mika
Geometry of Riemann surfaces and Teichmüller spaces
Riemann, surfaces de ram
Teichmüller, espaces de ram
Riemann surfaces fast
Teichmüller spaces fast
Riemann surfaces
Teichmüller spaces
Riemannscher Raum (DE-588)4128295-4 gnd
Teichmüller-Raum (DE-588)4131425-6 gnd
Riemannsche Fläche (DE-588)4049991-1 gnd
subject_GND (DE-588)4128295-4
(DE-588)4131425-6
(DE-588)4049991-1
title Geometry of Riemann surfaces and Teichmüller spaces
title_auth Geometry of Riemann surfaces and Teichmüller spaces
title_exact_search Geometry of Riemann surfaces and Teichmüller spaces
title_full Geometry of Riemann surfaces and Teichmüller spaces Mika Seppälä, Tuomas Sorvali
title_fullStr Geometry of Riemann surfaces and Teichmüller spaces Mika Seppälä, Tuomas Sorvali
title_full_unstemmed Geometry of Riemann surfaces and Teichmüller spaces Mika Seppälä, Tuomas Sorvali
title_short Geometry of Riemann surfaces and Teichmüller spaces
title_sort geometry of riemann surfaces and teichmuller spaces
topic Riemann, surfaces de ram
Teichmüller, espaces de ram
Riemann surfaces fast
Teichmüller spaces fast
Riemann surfaces
Teichmüller spaces
Riemannscher Raum (DE-588)4128295-4 gnd
Teichmüller-Raum (DE-588)4131425-6 gnd
Riemannsche Fläche (DE-588)4049991-1 gnd
topic_facet Riemann, surfaces de
Teichmüller, espaces de
Riemann surfaces
Teichmüller spaces
Riemannscher Raum
Teichmüller-Raum
Riemannsche Fläche
url http://www.sciencedirect.com/science/book/9780444888464
work_keys_str_mv AT seppalamika geometryofriemannsurfacesandteichmullerspaces
AT sorvalituomas geometryofriemannsurfacesandteichmullerspaces