Generalized solutions of nonlinear partial differential equations

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rosinger, Elemer E. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Amsterdam North-Holland c1987
Schriftenreihe:North-Holland mathematics studies 146
Notas de matemática (Rio de Janeiro, Brazil) no. 119
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042317759
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150129s1987 xx o|||| 00||| eng d
020 |a 9780444703101  |9 978-0-444-70310-1 
020 |a 0444703101  |9 0-444-70310-1 
020 |a 9780080872575  |c electronic bk.  |9 978-0-08-087257-5 
020 |a 0080872573  |c electronic bk.  |9 0-08-087257-3 
020 |a 1281793078  |9 1-281-79307-8 
020 |a 9781281793072  |9 978-1-281-79307-2 
035 |a (ZDB-33-EBS)ocn316568554 
035 |a (OCoLC)316568554 
035 |a (DE-599)BVBBV042317759 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046 
082 0 |a 510  |2 22 
082 0 |a 515.3/55  |2 22 
100 1 |a Rosinger, Elemer E.  |e Verfasser  |4 aut 
245 1 0 |a Generalized solutions of nonlinear partial differential equations  |c Elemér E. Rosinger 
264 1 |a Amsterdam  |b North-Holland  |c c1987 
300 |a 1 Online-Ressource (xvii, 409 p.) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a North-Holland mathematics studies  |v 146 
490 0 |a Notas de matemática (Rio de Janeiro, Brazil)  |v no. 119 
500 |a During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research. The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concerning existence, uniqueness regularity, etc., of generalized solutions for nonlinear partial differential equations can be reduced to elementary calculus in Euclidean spaces, combined with elementary algebra in quotient rings of families of smooth functions on Euclidean spaces, all of that joined by certain asymptotic interpretations.  
500 |a In this way, one avoids the complexities and difficulties of the customary functional analytic methods which would involve sophisticated topologies on various function spaces. The result is a rather elementary yet powerful and far-reaching method which can, among others, give generalized solutions to linear and nonlinear partial differential equations previously unsolved or even unsolvable within distributions or hyperfunctions. Part 1 of the volume discusses the basic limitations of the linear theory of distributions when dealing with linear or nonlinear partial differential equations, particularly the impossibility and degeneracy results. Part 2 examines the way Colombeau constructs a nonlinear theory of generalized functions and then succeeds in proving quite impressive existence, uniqueness, regularity, etc., results concerning generalized solutions of large classes of linear and nonlinear partial differential equations.  
500 |a Finally, Part 3 is a short presentation of the nonlinear theory of Rosinger, showing its connections with Colombeau's theory, which it contains as a particular case 
500 |a Includes bibliographical references (p. 403-409) 
650 4 |a Équations aux dérivées partielles / Solutions numériques 
650 4 |a Équations différentielles non linéaires / Solutions numériques 
650 7 |a Differential equations, Nonlinear / Numerical solutions  |2 fast 
650 7 |a Differential equations, Partial / Numerical solutions  |2 fast 
650 7 |a MATHEMATICS / Differential Equations / General  |2 bisacsh 
650 4 |a Differential equations, Partial  |x Numerical solutions 
650 4 |a Differential equations, Nonlinear  |x Numerical solutions 
650 0 7 |a Schwache Lösung  |0 (DE-588)4131068-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Nichtlineare partielle Differentialgleichung  |0 (DE-588)4128900-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Numerische Mathematik  |0 (DE-588)4042805-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Nichtlineare partielle Differentialgleichung  |0 (DE-588)4128900-6  |D s 
689 0 1 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Nichtlineare partielle Differentialgleichung  |0 (DE-588)4128900-6  |D s 
689 1 1 |a Schwache Lösung  |0 (DE-588)4131068-8  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Numerische Mathematik  |0 (DE-588)4042805-9  |D s 
689 2 |8 3\p  |5 DE-604 
856 4 0 |u http://www.sciencedirect.com/science/book/9780444703101  |x Verlag  |3 Volltext 
912 |a ZDB-33-ESD 
912 |a ZDB-33-EBS 
940 1 |q FAW_PDA_ESD 
940 1 |q FLA_PDA_ESD 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027754750 

Datensatz im Suchindex

_version_ 1819294036074168320
any_adam_object
author Rosinger, Elemer E.
author_facet Rosinger, Elemer E.
author_role aut
author_sort Rosinger, Elemer E.
author_variant e e r ee eer
building Verbundindex
bvnumber BV042317759
collection ZDB-33-ESD
ZDB-33-EBS
ctrlnum (ZDB-33-EBS)ocn316568554
(OCoLC)316568554
(DE-599)BVBBV042317759
dewey-full 510
515.3/55
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
515 - Analysis
dewey-raw 510
515.3/55
dewey-search 510
515.3/55
dewey-sort 3510
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05110nam a2200745zcb4500</leader><controlfield tag="001">BV042317759</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1987 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444703101</subfield><subfield code="9">978-0-444-70310-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444703101</subfield><subfield code="9">0-444-70310-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080872575</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-087257-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080872573</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-087257-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281793078</subfield><subfield code="9">1-281-79307-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281793072</subfield><subfield code="9">978-1-281-79307-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316568554</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316568554</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317759</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.3/55</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rosinger, Elemer E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized solutions of nonlinear partial differential equations</subfield><subfield code="c">Elemér E. Rosinger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">c1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 409 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematics studies</subfield><subfield code="v">146</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Notas de matemática (Rio de Janeiro, Brazil)</subfield><subfield code="v">no. 119</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research. The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concerning existence, uniqueness regularity, etc., of generalized solutions for nonlinear partial differential equations can be reduced to elementary calculus in Euclidean spaces, combined with elementary algebra in quotient rings of families of smooth functions on Euclidean spaces, all of that joined by certain asymptotic interpretations. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this way, one avoids the complexities and difficulties of the customary functional analytic methods which would involve sophisticated topologies on various function spaces. The result is a rather elementary yet powerful and far-reaching method which can, among others, give generalized solutions to linear and nonlinear partial differential equations previously unsolved or even unsolvable within distributions or hyperfunctions. Part 1 of the volume discusses the basic limitations of the linear theory of distributions when dealing with linear or nonlinear partial differential equations, particularly the impossibility and degeneracy results. Part 2 examines the way Colombeau constructs a nonlinear theory of generalized functions and then succeeds in proving quite impressive existence, uniqueness, regularity, etc., results concerning generalized solutions of large classes of linear and nonlinear partial differential equations. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Finally, Part 3 is a short presentation of the nonlinear theory of Rosinger, showing its connections with Colombeau's theory, which it contains as a particular case</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 403-409)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations aux dérivées partielles / Solutions numériques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles non linéaires / Solutions numériques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Nonlinear / Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Partial / Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Differential Equations / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwache Lösung</subfield><subfield code="0">(DE-588)4131068-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Schwache Lösung</subfield><subfield code="0">(DE-588)4131068-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444703101</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754750</subfield></datafield></record></collection>
id DE-604.BV042317759
illustrated Not Illustrated
indexdate 2024-12-24T04:19:56Z
institution BVB
isbn 9780444703101
0444703101
9780080872575
0080872573
1281793078
9781281793072
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027754750
oclc_num 316568554
open_access_boolean
owner DE-1046
owner_facet DE-1046
physical 1 Online-Ressource (xvii, 409 p.)
psigel ZDB-33-ESD
ZDB-33-EBS
FAW_PDA_ESD
FLA_PDA_ESD
publishDate 1987
publishDateSearch 1987
publishDateSort 1987
publisher North-Holland
record_format marc
series2 North-Holland mathematics studies
Notas de matemática (Rio de Janeiro, Brazil)
spelling Rosinger, Elemer E. Verfasser aut
Generalized solutions of nonlinear partial differential equations Elemér E. Rosinger
Amsterdam North-Holland c1987
1 Online-Ressource (xvii, 409 p.)
txt rdacontent
c rdamedia
cr rdacarrier
North-Holland mathematics studies 146
Notas de matemática (Rio de Janeiro, Brazil) no. 119
During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research. The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concerning existence, uniqueness regularity, etc., of generalized solutions for nonlinear partial differential equations can be reduced to elementary calculus in Euclidean spaces, combined with elementary algebra in quotient rings of families of smooth functions on Euclidean spaces, all of that joined by certain asymptotic interpretations.
In this way, one avoids the complexities and difficulties of the customary functional analytic methods which would involve sophisticated topologies on various function spaces. The result is a rather elementary yet powerful and far-reaching method which can, among others, give generalized solutions to linear and nonlinear partial differential equations previously unsolved or even unsolvable within distributions or hyperfunctions. Part 1 of the volume discusses the basic limitations of the linear theory of distributions when dealing with linear or nonlinear partial differential equations, particularly the impossibility and degeneracy results. Part 2 examines the way Colombeau constructs a nonlinear theory of generalized functions and then succeeds in proving quite impressive existence, uniqueness, regularity, etc., results concerning generalized solutions of large classes of linear and nonlinear partial differential equations.
Finally, Part 3 is a short presentation of the nonlinear theory of Rosinger, showing its connections with Colombeau's theory, which it contains as a particular case
Includes bibliographical references (p. 403-409)
Équations aux dérivées partielles / Solutions numériques
Équations différentielles non linéaires / Solutions numériques
Differential equations, Nonlinear / Numerical solutions fast
Differential equations, Partial / Numerical solutions fast
MATHEMATICS / Differential Equations / General bisacsh
Differential equations, Partial Numerical solutions
Differential equations, Nonlinear Numerical solutions
Schwache Lösung (DE-588)4131068-8 gnd rswk-swf
Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd rswk-swf
Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf
Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf
Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 s
Numerisches Verfahren (DE-588)4128130-5 s
1\p DE-604
Schwache Lösung (DE-588)4131068-8 s
2\p DE-604
Numerische Mathematik (DE-588)4042805-9 s
3\p DE-604
http://www.sciencedirect.com/science/book/9780444703101 Verlag Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Rosinger, Elemer E.
Generalized solutions of nonlinear partial differential equations
Équations aux dérivées partielles / Solutions numériques
Équations différentielles non linéaires / Solutions numériques
Differential equations, Nonlinear / Numerical solutions fast
Differential equations, Partial / Numerical solutions fast
MATHEMATICS / Differential Equations / General bisacsh
Differential equations, Partial Numerical solutions
Differential equations, Nonlinear Numerical solutions
Schwache Lösung (DE-588)4131068-8 gnd
Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd
Numerische Mathematik (DE-588)4042805-9 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
subject_GND (DE-588)4131068-8
(DE-588)4128900-6
(DE-588)4042805-9
(DE-588)4128130-5
title Generalized solutions of nonlinear partial differential equations
title_auth Generalized solutions of nonlinear partial differential equations
title_exact_search Generalized solutions of nonlinear partial differential equations
title_full Generalized solutions of nonlinear partial differential equations Elemér E. Rosinger
title_fullStr Generalized solutions of nonlinear partial differential equations Elemér E. Rosinger
title_full_unstemmed Generalized solutions of nonlinear partial differential equations Elemér E. Rosinger
title_short Generalized solutions of nonlinear partial differential equations
title_sort generalized solutions of nonlinear partial differential equations
topic Équations aux dérivées partielles / Solutions numériques
Équations différentielles non linéaires / Solutions numériques
Differential equations, Nonlinear / Numerical solutions fast
Differential equations, Partial / Numerical solutions fast
MATHEMATICS / Differential Equations / General bisacsh
Differential equations, Partial Numerical solutions
Differential equations, Nonlinear Numerical solutions
Schwache Lösung (DE-588)4131068-8 gnd
Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd
Numerische Mathematik (DE-588)4042805-9 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
topic_facet Équations aux dérivées partielles / Solutions numériques
Équations différentielles non linéaires / Solutions numériques
Differential equations, Nonlinear / Numerical solutions
Differential equations, Partial / Numerical solutions
MATHEMATICS / Differential Equations / General
Differential equations, Partial Numerical solutions
Differential equations, Nonlinear Numerical solutions
Schwache Lösung
Nichtlineare partielle Differentialgleichung
Numerische Mathematik
Numerisches Verfahren
url http://www.sciencedirect.com/science/book/9780444703101
work_keys_str_mv AT rosingerelemere generalizedsolutionsofnonlinearpartialdifferentialequations