Mathematical elasticity, Volume II, Theory of plates

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ciarlet, Philippe G. 1938- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Amsterdam North-Holland 1997
Schriftenreihe:Studies in mathematics and its applications 27
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042317357
003 DE-604
005 20240215
007 cr|uuu---uuuuu
008 150129s1997 xx o|||| 00||| eng d
020 |a 9780444825704  |9 978-0-444-82570-4 
020 |a 0444825703  |9 0-444-82570-3 
035 |a (ZDB-33-EBS)ocn162588994 
035 |a (OCoLC)162588994 
035 |a (DE-599)BVBBV042317357 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-706 
082 0 |a 531/.381  |2 22 
100 1 |a Ciarlet, Philippe G.  |d 1938-  |e Verfasser  |0 (DE-588)143368362  |4 aut 
245 1 0 |a Mathematical elasticity, Volume II, Theory of plates  |c Philippe G. Ciarlet 
246 1 3 |a Theory of plates 
264 1 |a Amsterdam  |b North-Holland  |c 1997 
300 |a 1 Online-Ressource (/ ill) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Studies in mathematics and its applications  |v v. 27 
500 |a The objective of Volume II is to show how asymptotic methods, with the thickness as the small parameter, indeed provide a powerful means of justifying two-dimensional plate theories. More specifically, without any recourse to any a priori assumptions of a geometrical or mechanical nature, it is shown that in the linear case, the three-dimensional displacements, once properly scaled, converge in H1 towards a limit that satisfies the well-known two-dimensional equations of the linear Kirchhoff-Love theory; the convergence of stress is also established. In the nonlinear case, again after ad hoc scalings have been performed, it is shown that the leading term of a formal asymptotic expansion of the three-dimensional solution satisfies well-known two-dimensional equations, such as those of the nonlinear Kirchhoff-Love theory, or the von K̀rm̀n equations. Special attention is also given to the first convergence result obtained in this case, which leads to two-dimensional large deformation, frame-indifferent, nonlinear membrane theories. It is also demonstrated that asymptotic methods can likewise be used for justifying other lower-dimensional equations of elastic shallow shells, and the coupled pluri-dimensional equations of elastic multi-structures, i.e., structures with junctions. In each case, the existence, uniqueness or multiplicity, and regularity of solutions to the limit equations obtained in this fashion are also studied 
500 |a Includes bibliographical references and indexes 
650 7 |a Elasticiteit  |2 gtt 
650 7 |a Elastic plates and shells  |2 fast 
650 7 |a Elasticity  |2 fast 
650 4 |a Elasticity 
650 4 |a Elastic plates and shells 
830 0 |a Studies in mathematics and its applications  |v 27  |w (DE-604)BV023068024  |9 27 
856 4 0 |u http://www.sciencedirect.com/science/book/9780444825704  |x Verlag  |3 Volltext 
912 |a ZDB-33-ESD 
912 |a ZDB-33-EBS 
940 1 |q FAW_PDA_ESD 
940 1 |q FLA_PDA_ESD 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027754347 

Datensatz im Suchindex

_version_ 1819294035167150080
any_adam_object
author Ciarlet, Philippe G. 1938-
author_GND (DE-588)143368362
author_facet Ciarlet, Philippe G. 1938-
author_role aut
author_sort Ciarlet, Philippe G. 1938-
author_variant p g c pg pgc
building Verbundindex
bvnumber BV042317357
collection ZDB-33-ESD
ZDB-33-EBS
ctrlnum (ZDB-33-EBS)ocn162588994
(OCoLC)162588994
(DE-599)BVBBV042317357
dewey-full 531/.381
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 531 - Classical mechanics
dewey-raw 531/.381
dewey-search 531/.381
dewey-sort 3531 3381
dewey-tens 530 - Physics
discipline Physik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03002nam a2200469zcb4500</leader><controlfield tag="001">BV042317357</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1997 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444825704</subfield><subfield code="9">978-0-444-82570-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444825703</subfield><subfield code="9">0-444-82570-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn162588994</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162588994</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317357</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531/.381</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ciarlet, Philippe G.</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143368362</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical elasticity, Volume II, Theory of plates</subfield><subfield code="c">Philippe G. Ciarlet</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Theory of plates</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (/ ill)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Studies in mathematics and its applications</subfield><subfield code="v">v. 27</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The objective of Volume II is to show how asymptotic methods, with the thickness as the small parameter, indeed provide a powerful means of justifying two-dimensional plate theories. More specifically, without any recourse to any a priori assumptions of a geometrical or mechanical nature, it is shown that in the linear case, the three-dimensional displacements, once properly scaled, converge in H1 towards a limit that satisfies the well-known two-dimensional equations of the linear Kirchhoff-Love theory; the convergence of stress is also established. In the nonlinear case, again after ad hoc scalings have been performed, it is shown that the leading term of a formal asymptotic expansion of the three-dimensional solution satisfies well-known two-dimensional equations, such as those of the nonlinear Kirchhoff-Love theory, or the von K̀rm̀n equations. Special attention is also given to the first convergence result obtained in this case, which leads to two-dimensional large deformation, frame-indifferent, nonlinear membrane theories. It is also demonstrated that asymptotic methods can likewise be used for justifying other lower-dimensional equations of elastic shallow shells, and the coupled pluri-dimensional equations of elastic multi-structures, i.e., structures with junctions. In each case, the existence, uniqueness or multiplicity, and regularity of solutions to the limit equations obtained in this fashion are also studied</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elasticiteit</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elastic plates and shells</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elasticity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elastic plates and shells</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Studies in mathematics and its applications</subfield><subfield code="v">27</subfield><subfield code="w">(DE-604)BV023068024</subfield><subfield code="9">27</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444825704</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754347</subfield></datafield></record></collection>
id DE-604.BV042317357
illustrated Not Illustrated
indexdate 2024-12-24T04:19:55Z
institution BVB
isbn 9780444825704
0444825703
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027754347
oclc_num 162588994
open_access_boolean
owner DE-1046
DE-706
owner_facet DE-1046
DE-706
physical 1 Online-Ressource (/ ill)
psigel ZDB-33-ESD
ZDB-33-EBS
FAW_PDA_ESD
FLA_PDA_ESD
publishDate 1997
publishDateSearch 1997
publishDateSort 1997
publisher North-Holland
record_format marc
series Studies in mathematics and its applications
series2 Studies in mathematics and its applications
spelling Ciarlet, Philippe G. 1938- Verfasser (DE-588)143368362 aut
Mathematical elasticity, Volume II, Theory of plates Philippe G. Ciarlet
Theory of plates
Amsterdam North-Holland 1997
1 Online-Ressource (/ ill)
txt rdacontent
c rdamedia
cr rdacarrier
Studies in mathematics and its applications v. 27
The objective of Volume II is to show how asymptotic methods, with the thickness as the small parameter, indeed provide a powerful means of justifying two-dimensional plate theories. More specifically, without any recourse to any a priori assumptions of a geometrical or mechanical nature, it is shown that in the linear case, the three-dimensional displacements, once properly scaled, converge in H1 towards a limit that satisfies the well-known two-dimensional equations of the linear Kirchhoff-Love theory; the convergence of stress is also established. In the nonlinear case, again after ad hoc scalings have been performed, it is shown that the leading term of a formal asymptotic expansion of the three-dimensional solution satisfies well-known two-dimensional equations, such as those of the nonlinear Kirchhoff-Love theory, or the von K̀rm̀n equations. Special attention is also given to the first convergence result obtained in this case, which leads to two-dimensional large deformation, frame-indifferent, nonlinear membrane theories. It is also demonstrated that asymptotic methods can likewise be used for justifying other lower-dimensional equations of elastic shallow shells, and the coupled pluri-dimensional equations of elastic multi-structures, i.e., structures with junctions. In each case, the existence, uniqueness or multiplicity, and regularity of solutions to the limit equations obtained in this fashion are also studied
Includes bibliographical references and indexes
Elasticiteit gtt
Elastic plates and shells fast
Elasticity fast
Elasticity
Elastic plates and shells
Studies in mathematics and its applications 27 (DE-604)BV023068024 27
http://www.sciencedirect.com/science/book/9780444825704 Verlag Volltext
spellingShingle Ciarlet, Philippe G. 1938-
Mathematical elasticity, Volume II, Theory of plates
Studies in mathematics and its applications
Elasticiteit gtt
Elastic plates and shells fast
Elasticity fast
Elasticity
Elastic plates and shells
title Mathematical elasticity, Volume II, Theory of plates
title_alt Theory of plates
title_auth Mathematical elasticity, Volume II, Theory of plates
title_exact_search Mathematical elasticity, Volume II, Theory of plates
title_full Mathematical elasticity, Volume II, Theory of plates Philippe G. Ciarlet
title_fullStr Mathematical elasticity, Volume II, Theory of plates Philippe G. Ciarlet
title_full_unstemmed Mathematical elasticity, Volume II, Theory of plates Philippe G. Ciarlet
title_short Mathematical elasticity, Volume II, Theory of plates
title_sort mathematical elasticity volume ii theory of plates
topic Elasticiteit gtt
Elastic plates and shells fast
Elasticity fast
Elasticity
Elastic plates and shells
topic_facet Elasticiteit
Elastic plates and shells
Elasticity
url http://www.sciencedirect.com/science/book/9780444825704
volume_link (DE-604)BV023068024
work_keys_str_mv AT ciarletphilippeg mathematicalelasticityvolumeiitheoryofplates
AT ciarletphilippeg theoryofplates