Random processes by example

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Lifšic, Michail A. 1956- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New Jersey [u.a.] World Scientific 2014
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV042141913
003 DE-604
005 20160621
007 t
008 141023s2014 xxud||| |||| 00||| eng d
010 |a 013048543 
020 |a 9789814522281  |9 978-981-4522-28-1 
035 |a (OCoLC)896727055 
035 |a (DE-599)BVBBV042141913 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-824  |a DE-11  |a DE-384  |a DE-83 
050 0 |a QA274 
082 0 |a 519.2/3  |2 23 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a 60Gxx  |2 msc 
100 1 |a Lifšic, Michail A.  |d 1956-  |e Verfasser  |0 (DE-588)12396718X  |4 aut 
245 1 0 |a Random processes by example  |c Mikhail Lifshits 
264 1 |a New Jersey [u.a.]  |b World Scientific  |c 2014 
300 |a XI, 219 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Includes bibliographical references and index 
650 4 |a Mathematisches Modell 
650 4 |a Stochastic processes  |x Mathematical models 
650 0 7 |a Stochastischer Prozess  |0 (DE-588)4057630-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematisches Modell  |0 (DE-588)4114528-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematische Modellierung  |0 (DE-588)7651795-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Stochastischer Prozess  |0 (DE-588)4057630-9  |D s 
689 0 1 |a Mathematisches Modell  |0 (DE-588)4114528-8  |D s 
689 0 2 |a Mathematische Modellierung  |0 (DE-588)7651795-0  |D s 
689 0 |5 DE-604 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027581874&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-027581874 

Datensatz im Suchindex

_version_ 1804152627496222720
adam_text Titel: Random processes by example Autor: Lifšic, Michail A Jahr: 2014 Contents Preface v Acknowledgments vii 1. Preliminaries 1 1 Random Variables: a Summary............... 1 1.1 Probability space, events, independence...... 1 1.2 Random variables and their distributions..... 3 1.3 Expectation..................... 6 1.4 Inequalities based on expectation......... 8 1.5 Variance....................... 9 1.6 Covariance, correlation coefficient......... 11 1.7 Complex-valued random variables......... 13 1.8 Characteristic functions............... 13 1.9 Convergence of random variables.......... 16 2 From Poisson to Stable Variables.............. 19 2.1 Compound Poisson variables............ 19 2.2 Limits of Compound Poisson variables....... 22 2.3 A mystery at zero.................. 26 2.4 Infinitely divisible random variables........ 27 2.5 Stable variables................... 28 3 Limit Theorems for Sums and Domains of Attraction ... 33 4 Random Vectors....................... 35 4.1 Definition....................... 35 4.2 Convergence of random vectors .......... 39 4.3 Gaussian vectors................... 41 4.4 Multivariate CLT.................. 45 x Contents 4.5 Stable vectors.................... 46 2. Random Processes 47 5 Random Processes: Main Classes.............. 47 6 Examples of Gaussian Random Processes......... 50 6.1 Wiener process.................... 51 6.2 Brownian bridge................... 55 6.3 Ornstein-Uhlenbeck process............ 58 6.4 Fractional Brownian motion............ 59 6.5 Brownian sheet ................... 63 6.6 Levy s Brownian function.............. 65 6.7 Further extensions.................. 65 7 Random Measures and Stochastic Integrals........ 67 7.1 Random measures with uncorrelated values .... 67 7.2 Gaussian white noise................ 71 7.3 Integral representations............... 73 7.4 Poisson random measures and integrals...... 78 7.5 Independently scattered stable random measures and integrals..................... 87 8 Limit Theorems for Poisson Integrals............ 92 8.1 Convergence to the normal distribution...... 92 8.2 Convergence to a stable distribution........ 94 9 Levy Processes........................ 97 9.1 General Levy processes............... 97 9.2 Compound Poisson processes............ 101 9.3 Stable Levy processes................ 101 10 Spectral Representations................... 105 10.1 Wide sense stationary processes.......... 105 10.2 Spectral representations............... 106 10.3 Further extensions.................. 112 11 Convergence of Random Processes............. 114 11.1 Finite-dimensional convergence........... 114 11.2 Weak convergence.................. 118 3. Teletraffic Models 131 12 A Model of Service System ................. 132 12.1 Main assumptions on the service time and resource consummation.................... 134 Contents xi 12.2 Analysis of workload variance........... 136 13 Limit Theorems for the Workload.............. 141 13.1 Centered and scaled workload process....... 141 13.2 Weak dependence: convergence to Wiener process 143 13.3 Long ränge dependence: convergence to fBm . . . 151 13.4 Convergence to a stable Levy process....... 157 13.5 Convergence to Telecom processes......... 172 13.6 Handling messengers from the past ....... 178 14 Micropulse Model....................... 180 15 Spacial Extensions...................... 188 15.1 Spacial model.................... 188 15.2 Spacial noise integrals................ 190 15.3 Limit theorems for spacial load........... 192 Notations 203 Bibliography 207 Index 215
any_adam_object 1
author Lifšic, Michail A. 1956-
author_GND (DE-588)12396718X
author_facet Lifšic, Michail A. 1956-
author_role aut
author_sort Lifšic, Michail A. 1956-
author_variant m a l ma mal
building Verbundindex
bvnumber BV042141913
callnumber-first Q - Science
callnumber-label QA274
callnumber-raw QA274
callnumber-search QA274
callnumber-sort QA 3274
callnumber-subject QA - Mathematics
classification_rvk SK 820
ctrlnum (OCoLC)896727055
(DE-599)BVBBV042141913
dewey-full 519.2/3
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.2/3
dewey-search 519.2/3
dewey-sort 3519.2 13
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01775nam a2200457 c 4500</leader><controlfield tag="001">BV042141913</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160621 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">141023s2014 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">013048543</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814522281</subfield><subfield code="9">978-981-4522-28-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)896727055</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042141913</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60Gxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lifšic, Michail A.</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12396718X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Random processes by example</subfield><subfield code="c">Mikhail Lifshits</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 219 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Modellierung</subfield><subfield code="0">(DE-588)7651795-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematische Modellierung</subfield><subfield code="0">(DE-588)7651795-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=027581874&amp;sequence=000004&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027581874</subfield></datafield></record></collection>
id DE-604.BV042141913
illustrated Illustrated
indexdate 2024-07-10T01:13:43Z
institution BVB
isbn 9789814522281
language English
lccn 013048543
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027581874
oclc_num 896727055
open_access_boolean
owner DE-824
DE-11
DE-384
DE-83
owner_facet DE-824
DE-11
DE-384
DE-83
physical XI, 219 S. graph. Darst.
publishDate 2014
publishDateSearch 2014
publishDateSort 2014
publisher World Scientific
record_format marc
spelling Lifšic, Michail A. 1956- Verfasser (DE-588)12396718X aut
Random processes by example Mikhail Lifshits
New Jersey [u.a.] World Scientific 2014
XI, 219 S. graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
Includes bibliographical references and index
Mathematisches Modell
Stochastic processes Mathematical models
Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf
Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf
Mathematische Modellierung (DE-588)7651795-0 gnd rswk-swf
Stochastischer Prozess (DE-588)4057630-9 s
Mathematisches Modell (DE-588)4114528-8 s
Mathematische Modellierung (DE-588)7651795-0 s
DE-604
HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027581874&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Lifšic, Michail A. 1956-
Random processes by example
Mathematisches Modell
Stochastic processes Mathematical models
Stochastischer Prozess (DE-588)4057630-9 gnd
Mathematisches Modell (DE-588)4114528-8 gnd
Mathematische Modellierung (DE-588)7651795-0 gnd
subject_GND (DE-588)4057630-9
(DE-588)4114528-8
(DE-588)7651795-0
title Random processes by example
title_auth Random processes by example
title_exact_search Random processes by example
title_full Random processes by example Mikhail Lifshits
title_fullStr Random processes by example Mikhail Lifshits
title_full_unstemmed Random processes by example Mikhail Lifshits
title_short Random processes by example
title_sort random processes by example
topic Mathematisches Modell
Stochastic processes Mathematical models
Stochastischer Prozess (DE-588)4057630-9 gnd
Mathematisches Modell (DE-588)4114528-8 gnd
Mathematische Modellierung (DE-588)7651795-0 gnd
topic_facet Mathematisches Modell
Stochastic processes Mathematical models
Stochastischer Prozess
Mathematische Modellierung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027581874&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT lifsicmichaila randomprocessesbyexample