Vector Fields and Other Vector Bundle Morphisms — A Singularity Approach

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Koschorke, Ulrich (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin [u.a.] Springer 1981
Schriftenreihe:Lecture notes in mathematics 847
Schlagworte:
Online-Zugang:BSB01
BTU01
BTW01
DMM01
EUV01
FAW01
FHA01
FHI01
FHM01
FKE01
FLA01
HTW01
LCO01
TUM01
UBA01
UBG01
UBM01
UBR01
UBT01
UBY01
UER01
UPA01
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV041962896
003 DE-604
005 20180926
007 cr|uuu---uuuuu
008 140709s1981 |||| o||u| ||||||eng d
020 |a 9783540105725  |c Online  |9 978-3-540-10572-5 
024 7 |a 10.1007/BFb0090440  |2 doi 
035 |a (OCoLC)838034043 
035 |a (DE-599)BVBBV041962896 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-12  |a DE-473  |a DE-703  |a DE-29  |a DE-19  |a DE-91  |a DE-739  |a DE-355  |a DE-Aug4  |a DE-860  |a DE-M347  |a DE-70  |a DE-210  |a DE-634  |a DE-859  |a DE-706  |a DE-1046  |a DE-526  |a DE-521  |a DE-384  |a DE-573  |a DE-523 
082 0 |a 514.34 
100 1 |a Koschorke, Ulrich  |e Verfasser  |4 aut 
245 1 0 |a Vector Fields and Other Vector Bundle Morphisms — A Singularity Approach  |c Ulrich Koschorke 
264 1 |a Berlin [u.a.]  |b Springer  |c 1981 
300 |a 1 Online-Ressource 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Lecture notes in mathematics  |v 847 
650 0 7 |a Klassifikation  |0 (DE-588)4030958-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Vektorfeld  |0 (DE-588)4139571-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Singularität  |g Mathematik  |0 (DE-588)4077459-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Bordismus  |0 (DE-588)4146318-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Vektorraumbündel  |0 (DE-588)4187470-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Vektorraumbündel  |0 (DE-588)4187470-5  |D s 
689 0 1 |a Singularität  |g Mathematik  |0 (DE-588)4077459-4  |D s 
689 0 |5 DE-604 
689 1 0 |a Vektorfeld  |0 (DE-588)4139571-2  |D s 
689 1 1 |a Singularität  |g Mathematik  |0 (DE-588)4077459-4  |D s 
689 1 |5 DE-604 
689 2 0 |a Bordismus  |0 (DE-588)4146318-3  |D s 
689 2 1 |a Klassifikation  |0 (DE-588)4030958-7  |D s 
689 2 2 |a Vektorraumbündel  |0 (DE-588)4187470-5  |D s 
689 2 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-3-540-38546-2 
830 0 |a Lecture notes in mathematics  |v 847  |w (DE-604)BV014303148  |9 847 
856 4 0 |u https://doi.org/10.1007/BFb0090440  |x Verlag  |3 Volltext 
912 |a ZDB-1-SLN 
999 |a oai:aleph.bib-bvb.de:BVB01-027405680 
966 e |u https://doi.org/10.1007/BFb0090440  |l BSB01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l BTU01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l BTW01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l DMM01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l EUV01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l FAW01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l FHA01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l FHI01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l FHM01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l FKE01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l FLA01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l HTW01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l LCO01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l TUM01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l UBA01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l UBG01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l UBM01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l UBR01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l UBT01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l UBY01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l UER01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0090440  |l UPA01  |p ZDB-1-SLN  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-TUM_katkey 2009148
DE-BY-UBG_katkey 3164743
_version_ 1816713995329994752
any_adam_object
author Koschorke, Ulrich
author_facet Koschorke, Ulrich
author_role aut
author_sort Koschorke, Ulrich
author_variant u k uk
building Verbundindex
bvnumber BV041962896
collection ZDB-1-SLN
ctrlnum (OCoLC)838034043
(DE-599)BVBBV041962896
dewey-full 514.34
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 514 - Topology
dewey-raw 514.34
dewey-search 514.34
dewey-sort 3514.34
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/BFb0090440
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03989nmm a2200781zcb4500</leader><controlfield tag="001">BV041962896</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180926 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">140709s1981 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540105725</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-10572-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BFb0090440</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)838034043</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041962896</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-70</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.34</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koschorke, Ulrich</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vector Fields and Other Vector Bundle Morphisms — A Singularity Approach</subfield><subfield code="c">Ulrich Koschorke</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">847</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bordismus</subfield><subfield code="0">(DE-588)4146318-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorraumbündel</subfield><subfield code="0">(DE-588)4187470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vektorraumbündel</subfield><subfield code="0">(DE-588)4187470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Bordismus</subfield><subfield code="0">(DE-588)4146318-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Vektorraumbündel</subfield><subfield code="0">(DE-588)4187470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-540-38546-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">847</subfield><subfield code="w">(DE-604)BV014303148</subfield><subfield code="9">847</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SLN</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027405680</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">BTW01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">DMM01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">EUV01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">FHM01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">LCO01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0090440</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV041962896
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9783540105725
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027405680
oclc_num 838034043
open_access_boolean
owner DE-12
DE-473
DE-BY-UBG
DE-703
DE-29
DE-19
DE-BY-UBM
DE-91
DE-BY-TUM
DE-739
DE-355
DE-BY-UBR
DE-Aug4
DE-860
DE-M347
DE-70
DE-210
DE-634
DE-859
DE-706
DE-1046
DE-526
DE-521
DE-384
DE-573
DE-523
owner_facet DE-12
DE-473
DE-BY-UBG
DE-703
DE-29
DE-19
DE-BY-UBM
DE-91
DE-BY-TUM
DE-739
DE-355
DE-BY-UBR
DE-Aug4
DE-860
DE-M347
DE-70
DE-210
DE-634
DE-859
DE-706
DE-1046
DE-526
DE-521
DE-384
DE-573
DE-523
physical 1 Online-Ressource
psigel ZDB-1-SLN
publishDate 1981
publishDateSearch 1981
publishDateSort 1981
publisher Springer
record_format marc
series Lecture notes in mathematics
series2 Lecture notes in mathematics
spellingShingle Koschorke, Ulrich
Vector Fields and Other Vector Bundle Morphisms — A Singularity Approach
Lecture notes in mathematics
Klassifikation (DE-588)4030958-7 gnd
Vektorfeld (DE-588)4139571-2 gnd
Singularität Mathematik (DE-588)4077459-4 gnd
Bordismus (DE-588)4146318-3 gnd
Vektorraumbündel (DE-588)4187470-5 gnd
subject_GND (DE-588)4030958-7
(DE-588)4139571-2
(DE-588)4077459-4
(DE-588)4146318-3
(DE-588)4187470-5
title Vector Fields and Other Vector Bundle Morphisms — A Singularity Approach
title_auth Vector Fields and Other Vector Bundle Morphisms — A Singularity Approach
title_exact_search Vector Fields and Other Vector Bundle Morphisms — A Singularity Approach
title_full Vector Fields and Other Vector Bundle Morphisms — A Singularity Approach Ulrich Koschorke
title_fullStr Vector Fields and Other Vector Bundle Morphisms — A Singularity Approach Ulrich Koschorke
title_full_unstemmed Vector Fields and Other Vector Bundle Morphisms — A Singularity Approach Ulrich Koschorke
title_short Vector Fields and Other Vector Bundle Morphisms — A Singularity Approach
title_sort vector fields and other vector bundle morphisms a singularity approach
topic Klassifikation (DE-588)4030958-7 gnd
Vektorfeld (DE-588)4139571-2 gnd
Singularität Mathematik (DE-588)4077459-4 gnd
Bordismus (DE-588)4146318-3 gnd
Vektorraumbündel (DE-588)4187470-5 gnd
topic_facet Klassifikation
Vektorfeld
Singularität Mathematik
Bordismus
Vektorraumbündel
url https://doi.org/10.1007/BFb0090440
volume_link (DE-604)BV014303148
work_keys_str_mv AT koschorkeulrich vectorfieldsandothervectorbundlemorphismsasingularityapproach