Applied Bayesian modelling

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Congdon, Peter 1949- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Chichester Wiley 2014
Ausgabe:2. ed.
Schriftenreihe:Wiley series in probability and statistics
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Klappentext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV041953769
003 DE-604
005 20150218
007 t
008 140704s2014 ad|| |||| 00||| eng d
010 |a 2014004862 
020 |a 9781119951513  |c cloth  |9 978-1-119-95151-3 
035 |a (OCoLC)879620479 
035 |a (DE-599)GBV782724655 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-19  |a DE-29T  |a DE-11  |a DE-1049  |a DE-703  |a DE-824 
050 0 |a QA279.5 
082 0 |a 519.5/42 
084 |a SK 830  |0 (DE-625)143259:  |2 rvk 
084 |a 31.73  |2 bkl 
100 1 |a Congdon, Peter  |d 1949-  |e Verfasser  |0 (DE-588)170438783  |4 aut 
245 1 0 |a Applied Bayesian modelling  |c Peter Congdon 
250 |a 2. ed. 
264 1 |a Chichester  |b Wiley  |c 2014 
300 |a IX, 437 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Wiley series in probability and statistics 
500 |a Literaturangaben 
650 4 |a Bayesian statistical decision theory 
650 4 |a Mathematical statistics 
650 0 7 |a Bayes-Verfahren  |0 (DE-588)4204326-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Bayes-Entscheidungstheorie  |0 (DE-588)4144220-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Bayes-Entscheidungstheorie  |0 (DE-588)4144220-9  |D s 
689 0 |5 DE-604 
689 1 0 |a Bayes-Verfahren  |0 (DE-588)4204326-8  |D s 
689 1 |8 1\p  |5 DE-604 
856 4 2 |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027396685&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027396685&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
999 |a oai:aleph.bib-bvb.de:BVB01-027396685 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

_version_ 1804152336600268800
adam_text Contents Preface χι Bayesian methods and Bayesian estimation 1 1.1 Introduction 1 1.1.1 Summarising existing knowledge: Prior densities for parameters 2 1.1.2 Updating information: Prior, likelihood and posterior densities 3 1.1.3 Predictions and assessment 5 1.1.4 Sampling parameters 6 1.2 MCMC techniques: The Metropolis-Hastings algorithm 7 1.2.1 Gibbs sampling 8 1.2.2 Other MCMC algorithms 9 1.2.3 INLA approximations 10 1.3 Software for MCMC: BUGS, JAGS and R-INLA 11 1.4 Monitoring MCMC chains and assessing convergence 19 1.4.1 Convergence diagnostics 20 1.4.2 Model identirmbility 21 1.5 Model assessment 23 1.5.1 Sensitivity to priors 23 1.5.2 Model checks 24 1.5.3 Model choice 25 References 28 Hierarchical models for related units 34 2.1 Introduction: Smoothing to the hyper population 34 2.2 Approaches to model assessment: Penalised fit criteria, marginal likelihood and predictive methods 35 2.2.1 Penalised fit criteria 36 2.2.2 Formal model selection using marginal likelihoods 37 2.2.3 Estimating model probabilities or marginal likelihoods in practice 38 2.2.4 Approximating the posterior density 40 2.2.5 Modei averaging from MCMC samples 42 2.2.6 Predictive criteria for model checking and selection: Cross-validation 46 vi CONTENTS 2.2.7 Predictive checks and model choice using complete data replicate sampling 50 2.3 Ensemble estimates: Poisson -gamma and Beta-binomial hierarchical models 53 2.3.1 Hierarchical mixtures for poisson and binomial data 54 2.4 Hierarchical smoothing methods for continuous data 61 2.4.1 Priors on hyperparameters 62 2.4.2 Relaxing normality assumptions 63 2.4.3 Multivariate borrowing of strength 65 2.5 Discrete mixtures and dirichlet processes 69 2.5.1 Finite mixture models 69 2.5.2 Dirichlet process priors 72 2.6 General additive and histogram smoothing priors 78 2.6.1 Smoothness priors 79 2.6.2 Histogram smoothing 80 Exercises 83 Notes 86 References 89 3 Regression techniques 97 3.1 Introduction: Bayesian regression 97 3.2 Normal linear regression 98 3.2.1 Linear regression model checking 99 3.3 Simple generalized linear models: Binomial, binary and Poisson regression 102 3.3.1 Binary and binomial regression 102 3.3.2 Poisson regression 105 3.4 Augmented data regression 107 3.5 Predictor subset choice 110 3.5.1 The ¿»-prior approach 114 3.5.2 Hierarchical lasso prior methods 116 3.6 Multinomial, nested and ordinal regression 126 3.6.1 Nested logit specification 128 3.6.2 Ordinal outcomes 130 Exercises 136 Notes 138 References 144 4 More advanced regression techniques 149 4.1 Introduction 149 4.2 Departures from linear model assumptions and robust alternatives 149 4.3 Regression for overdispersed discrete outcomes 154 4.3.1 Excess zeroes 157 4.4 Link selection 160 4.5 Discrete mixture regressions for regression and outlier status 161 4.5.1 Outlier accommodation 163 4.6 Modelling non-linear regression effects 167 4.6.1 Smoothness priors for non-linear regression 167 CONTENTS vii 4.6.2 Spline regression and other basis functions 169 4.6.3 Priors on basis coefficients 171 4.7 Quanti le regression 175 Exercises 177 Notes 177 References 179 5 Meta-analysis and multilevel models 183 5.1 Introduction 183 5.2 Meta-analysis; Bayesian evidence synthesis 184 5.2.1 Common forms of meta-analysis 185 5.2.2 Priors for stage 2 variation in meta-analysis 188 5.2.3 Multi variate meta-analysis 193 5.3 Multilevel models: Univariate continuous outcomes 195 5.4 Multilevel discrete responses 201 5.5 Modelling heteroscedasticity 204 5.6 Multilevel data on multi variate indices 206 Exercises 208 Notes 210 References 211 6 Models for time series 215 6.1 Introduction 215 6.2 Autoregressive and moving average models 216 6.2.1 Depende ni errors 218 6.2.2 Bayesian priors în ARMA models 218 6.2.3 Further types of time dependence 222 6.3 Discrete outcomes 229 6.3.1 IN AR models for counts 231 6.3.2 Evolution in conjugate process parameters 232 6.4 Dynamic linear and general linear models 235 6.4.1 Further forma of dynamic models 238 6.5 Stochastic variances and stochastic volatility 244 6.5.1 ARCH and GARCH models 244 6.5.2 State space stochastic volatility models 245 6.6 Modelling structural shifts 248 6.6.1 Level, trend and variance shifts 249 6.6.2 Latent state models including historic dependence 250 6.6.3 Switching regressions and autoregressions 251 Exercises 258 Notes 261 References 265 7 Analysis of panei data 273 7.1 Introduction 273 7.2 Hierarchical longitudinal models for metric data 274 7.2.1 Autoregressive errors 275 viii CONTENTS 7.2.2 Dynamic linear models 276 7.2.3 Extended time dependence 276 7.3 Normal linear panel models and normal linear growth curves 278 7.3.1 Growth curves 280 7.3.2 Subject level autoregressive parameters 283 7.4 Longitudinal discrete data: Binary, categorical and Poisson panel data 285 7.4.1 Binary panel data 285 7.4.2 Ordinai panel data 288 7.4.3 Panel data for counts 292 7.5 Random effects selection 295 7.6 Missing data in longitudinal studies 297 Exercises 302 Notes 303 References 306 8 Models for spatial outcomes and geographical association 312 8.1 Introduction 312 8.2 Spatial regressions and simultaneous dependence 313 8.2. ł Regression with localised dependence 316 8.2.2 Binary outcomes 317 8.3 Conditional prior models 321 8.3.1 Ecological analysis involving count data 324 8.4 Spatial covariation and interpolation in continuous space 329 8.4.1 Discrete convolution processes 332 8.5 Spatial heterogeneity and spatially varying coefficient priors 337 8.5.1 Spatial expansion and geographically weighted regression 338 8.5.2 Spatially varying coefficients via multivariate priors 339 8.6 Spatio-temporal models 343 8.6.1 Conditional prior representations 345 8.7 Clustering in relation to known centres 348 8.7.1 Areas or cases as data 350 8.7.2 Multiple sources 350 Exercises 352 Notes 354 References 355 9 Latent variable and structural equation models 364 9.1 Introduction 364 9.2 Normal linear structural equation models 365 9.2.1 Cross-sectional normal SEMs 365 9.2.2 Identifiability constraints 367 9.3 Dynamic factor models, panel data factor models and spatial factor models 372 9.3.1 Dynamic factor models 372 9.3.2 Linear SEMs for panel data 374 9.3.3 Spatial factor models 378 CONTENTS ix 9.4 Latent trait and latent class analysis for discrete outcomes 381 9.4.1 Latent trait models 381 9.4.2 Latent class models 382 9.5 Latent trait models for multilevel data 387 9.6 Structural equation models for missing data 389 Exercises 392 Notes 394 References 397 10 Survival and event history models 402 10.1 Introduction 402 10.2 Continuous time functions for survival 403 10.2.1 Parametric hazard models 405 10.2.2 Se mi- parametric hazards 408 10.3 Accelerated hazards 411 10.4 Discrete time approximations 413 10.4.1 Discrete time hazards regression 415 10.5 Accounting for frailty in event history and survival models 417 10.6 Further applications of frailty models 421 10.7 Competing risks 423 Exercises 425 References 426 Index 431 Applied Bayesian Modelling Second Edition Peter Congdon Centre for Statistics and Department of Geography, Queen Mary, University of London, UK Application settings for Bayesian methods have widened considerably in the last decade, and Bayesian inference and estimation is now a popular choice for routine data analysis. This second edition of Applied Bayesian Modelling reviews a range of major statistical models from a Bayesian perspective, and focuses on the practical implementation of Bayesian techniques using real-life examples. The main focus for implementation is BUGS, encompassing the WinBUGS, OpenBUGS and JAGS freeware packages that offer a simplified and flexible approach to Bayesian statistical modelling. However, also included are analyses in R which is increasingly used as a standalone option or as platform for interface with BUGS. The book gives a detailed explanation of each example - explaining fully the choice of model for each particular problem. Key Features: • Provides a broad and comprehensive account of applied Bayesian modelling. • Describes a variety of model assessment methods and the flexibility of Bayesian prior specifications. • Covers many application areas, including panel data models, structural equation and other multivariate structure models, spatial analysis, and survival analysis. • Provides detailed and updated worked examples in BUGS and R to illustrate the practical application of the techniques described. • All BUGS and R programs are available from an ftp site. Applied Bayesian Modelling provides a good introduction to Bayesian modelling and data analysis for a wide range of people involved in applied statistical analysis, including researchers and students from statistics and the health and social sciences. The wealth of examples makes this book an ideal reference for anyone involved in statistical modelling and analysis. Front cover graphic depicts modelled monthly Arctic sea ice extents. 1979-2011, R-INLA estimates
any_adam_object 1
author Congdon, Peter 1949-
author_GND (DE-588)170438783
author_facet Congdon, Peter 1949-
author_role aut
author_sort Congdon, Peter 1949-
author_variant p c pc
building Verbundindex
bvnumber BV041953769
callnumber-first Q - Science
callnumber-label QA279
callnumber-raw QA279.5
callnumber-search QA279.5
callnumber-sort QA 3279.5
callnumber-subject QA - Mathematics
classification_rvk SK 830
ctrlnum (OCoLC)879620479
(DE-599)GBV782724655
dewey-full 519.5/42
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.5/42
dewey-search 519.5/42
dewey-sort 3519.5 242
dewey-tens 510 - Mathematics
discipline Mathematik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02076nam a2200481 c 4500</leader><controlfield tag="001">BV041953769</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150218 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140704s2014 ad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2014004862</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119951513</subfield><subfield code="c">cloth</subfield><subfield code="9">978-1-119-95151-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879620479</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV782724655</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA279.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/42</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Congdon, Peter</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)170438783</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied Bayesian modelling</subfield><subfield code="c">Peter Congdon</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">Wiley</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 437 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley series in probability and statistics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=027396685&amp;sequence=000003&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=027396685&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027396685</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV041953769
illustrated Illustrated
indexdate 2024-07-10T01:09:06Z
institution BVB
isbn 9781119951513
language English
lccn 2014004862
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027396685
oclc_num 879620479
open_access_boolean
owner DE-19
DE-BY-UBM
DE-29T
DE-11
DE-1049
DE-703
DE-824
owner_facet DE-19
DE-BY-UBM
DE-29T
DE-11
DE-1049
DE-703
DE-824
physical IX, 437 S. Ill., graph. Darst.
publishDate 2014
publishDateSearch 2014
publishDateSort 2014
publisher Wiley
record_format marc
series2 Wiley series in probability and statistics
spelling Congdon, Peter 1949- Verfasser (DE-588)170438783 aut
Applied Bayesian modelling Peter Congdon
2. ed.
Chichester Wiley 2014
IX, 437 S. Ill., graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
Wiley series in probability and statistics
Literaturangaben
Bayesian statistical decision theory
Mathematical statistics
Bayes-Verfahren (DE-588)4204326-8 gnd rswk-swf
Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd rswk-swf
Bayes-Entscheidungstheorie (DE-588)4144220-9 s
DE-604
Bayes-Verfahren (DE-588)4204326-8 s
1\p DE-604
Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027396685&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027396685&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Congdon, Peter 1949-
Applied Bayesian modelling
Bayesian statistical decision theory
Mathematical statistics
Bayes-Verfahren (DE-588)4204326-8 gnd
Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd
subject_GND (DE-588)4204326-8
(DE-588)4144220-9
title Applied Bayesian modelling
title_auth Applied Bayesian modelling
title_exact_search Applied Bayesian modelling
title_full Applied Bayesian modelling Peter Congdon
title_fullStr Applied Bayesian modelling Peter Congdon
title_full_unstemmed Applied Bayesian modelling Peter Congdon
title_short Applied Bayesian modelling
title_sort applied bayesian modelling
topic Bayesian statistical decision theory
Mathematical statistics
Bayes-Verfahren (DE-588)4204326-8 gnd
Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd
topic_facet Bayesian statistical decision theory
Mathematical statistics
Bayes-Verfahren
Bayes-Entscheidungstheorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027396685&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027396685&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT congdonpeter appliedbayesianmodelling