Frontiers of surface-enhanced raman scattering single nanoparticles and single cells
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Chichester
Wiley
2014
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041852023 | ||
003 | DE-604 | ||
005 | 20160216 | ||
007 | t| | ||
008 | 140519s2014 xxkad|| |||| 00||| eng d | ||
010 | |a 013037278 | ||
020 | |a 9781118359020 |9 978-1-118-35902-0 | ||
035 | |a (OCoLC)878185709 | ||
035 | |a (DE-599)BVBBV041852023 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-703 |a DE-19 | ||
050 | 0 | |a QC454.R36 | |
082 | 0 | |a 543/.57 |2 23 | |
084 | |a UP 9200 |0 (DE-625)146454: |2 rvk | ||
084 | |a VG 9300 |0 (DE-625)147238:253 |2 rvk | ||
245 | 1 | 0 | |a Frontiers of surface-enhanced raman scattering |b single nanoparticles and single cells |c ed. by Yukihiro Ozaki ... |
246 | 1 | 3 | |a Frontiers of surface enhanced raman scattering |
250 | |a 1. publ. | ||
264 | 1 | |a Chichester |b Wiley |c 2014 | |
300 | |a XIII, 313 S., [18] Bl. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes index | ||
650 | 4 | |a Raman effect, Surface enhanced | |
650 | 4 | |a Surfaces (Physics) | |
650 | 4 | |a Raman spectroscopy | |
650 | 4 | |a Spectrum analysis | |
700 | 1 | |a Ozaki, Yukihiro |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027296463&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027296463&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027296463 |
Datensatz im Suchindex
_version_ | 1819579449144770560 |
---|---|
adam_text | Contents
List of Contributors
xi
Preface
xv
1.
Calculation of Surface-Enhanced Raman Spectra Including Orientational
and Stokes Effects Using TDDFT/Mie Theory QM/ED Method
1
George C.
Schatz
and Nicholas A. Valley
1.1
Introduction: Combined Quantum Mechanics/
Electrodynamics Methods
1
1.2
Computational Details
3
1.3
Summary of Model Systems
4
1.4
Azi mu
thai Averaging
5
1.5
SERS
of
Pyridine:
Models G, A, B, S, and V
6
1.6
Orientation Effects in
SERS
of Phthalocyanines
11
1.7
Two Particle QM/ED Calculations
13
1.8
Summary
15
Acknowledgment
16
References
16
2.
Non-resonant
SERS
Using the Hottest Hot Spots of
Plasmimi
с
Nanoaggregates
19
Katrin Kneipp
and
Harald Kneipp
2.1
Introduction
19
2.2 Aggregates
of Silver and Gold Nanoparticles and Their Hot Spots
21
2.2.1
Evaluation of Plasmonic Nanoaggregates by Vibrational
Pumping due to a Non-resonant
SERS
Process
21
2.2.2
Probing Plasmonic Nanoaggregates by Electron Energy Loss
Spectroscopy
24
2.2.3
Probing Local Fields in Hot Spots by
SERS
and SEHRS
25
2.3
SERS
Using Hot Silver Nanoaggregates and Non-resonant NIR
Excitation
26
2.3.1
SERS
Signal vs.
Concentration
of the Target Molecule
26
2.3.2
Spectroscopic Potential of Non-resonant
SERS
Using the
Hottest Hot Spots
30
2.4
Summary and Conclusions
31
References
32
vi
Contents
3.
Effect of Nanoparticle Symmetry on Plasmonic Fields:
Implications for Single-Molecule Raman Scattering
37
Lev Chuntonov and Gilad
Haran
3.1
Introduction
37
3.2
Methodology
38
3.3
Plasmon Mode Structure of Nanoparticle Clusters
39
3.3.1
Dimers
39
3.3.2
Trimers
40
3.4
Effect of Plasmon Modes on
SMSERS 47
3.4.1
Effect of the Spectral Lineshape
47
3.4.2
Effect of Multiple Normal Modes
49
3.5
Conclusions
54
Acknowledgment
54
References
54
4.
Experimental Demonstration of Electromagnetic Mechanism
of
SERS
and Quantitative Analysis of
SERS
Fluctuation Based
on the Mechanism
59
Tamitake Itoh
4.1
Experimental Demonstration of the EM Mechanism of
SERS
59
4.1.1
Introduction
59
4.1.2
Observations of the EM Mechanism in
SERS
Spectral
Variations
60
4.1.3
Observations of the EM Mechanism in the Refractive Index
Dependence of
SERS
Spectra
62
4.1
Λ
Quantitative Evaluation of the EM Mechanism of
SERS
64
4.1.5
Summary
72
4.2
Quantitative Analysis of
SERS
Fluctuation Based on
the EM Mechanism
72
4.2.1
Introduction
72
4.2.2
Intensity and Spectral Fluctuation in
SERS
and
SEF
73
4.2.3
Framework for Analysis of Fluctuation in
SERS
and
SEF
73
4.2.4
Analysis of Intensity Fluctuation in
SERS
and
SEF
76
4.2.5
Analysis of Spectral Fluctuation in
SERS
and
SEF
78
4.2.6
Summary
82
4.3
Conclusion
82
Acknowledgments
83
References
83
5.
Single-Molecule Surface-Enhanced Raman
Scattering
as a Probe
for Adsorption Dynamics on Metal Surfaces
89
Mai Takase, Fwmka Nagasawa, Hideki Nabika and
Kei Murakoshi
5.1
Introduction
89
Contents
vii
5.2
Simultaneous Measurements of Conductance and
SERS
of a
Single-Molecule Junction
90
5.3
SERS
Observation Using Heterometallic Nanodimers at the
Single-Molecule Level
96
5.4
Conclusion
101
Acknowledgments
101
References
101
6.
Analysis of Blinking
SERS
by a Power Law with an Exponential Function
107
Yasutaka Kitahama and Yukihiro Ozaki
6.1
Introduction
107
6.2
Materials and Methods
110
6.3
Power Law Analysis
110
6.4
Plasmon Resonance Wavelength Dependence
117
6.4.1
Power Law Exponents for the Bright and Dark Events
117
6.4.2
Truncation Time for the Dark Events
123
6.5
Energy Density Dependence
123
6.5.1
Power Law Exponents for the Bright and Dark Events
123
6.5.2
Truncation Time for the Dark Events
125
6.5.3
Comparison with Other Analysis
126
6.6
Temperature Dependence
129
6.6.1
Power Law Exponents for the Bright and Dark Events
129
6.6.2
Truncation Time for the Dark Events
129
6.6.3
Comparison with Other Analysis
130
6.7
Summary
132
Acknowledgments
132
References
133
7.
Tip-Enhanced Raman Spectroscopy (TERS) for Nanoscale Imaging
and Analysis
139
Taka-aki Yano and Satoshi Kawata
7.1
Crucial Difference between TERS and
SERS
139
7.2
TERS-Specific Spectral Change as a Function of Tip-Sample Distance
141
7.3
Mechanical Effect in TERS
143
7.4
Application to Analytical Nano-Imaging
144
7.5
Metallic Probe Tip: Design and Fabrication
149
7.6
Spatial Resolution
154
7.7
Real-Time
and
3D
Imaging: Perspectives
155
References
156
8.
Shell-Isolated
Nanopartícle-Enhanced
Raman Spectroscopy (SHINERS)
163
Jian-Feng
U
and Zhong-Qun
Tian
8.1
Introduction
163
8.2
Synthesis of Various Shell-Isolated Nanoparticles
(ЅНЕЧѕ)
167
viii Contents
8.3
CharacterizationsofSHINs
169
v 8.3.1
Correlation of the SHINERS Intensity and
Shell
Thickness
169
8.3.2
Characterization of the Ultra-Thin Uniform Silica Shell
171
8.3.3
Influence of the SHINs on the Surface
172
8.4
Applications of SHINERS
173
8.4.1
Single-Crystal Electrode Surface
173
8.4.2
Non-Metallic Material Surfaces
175
8.4.3
Single Particle SHINERS
178
8.5
Different Strategies of SHINERS Compared to Previous
SERS
Works
Using Core-Shell or Overlayer Structures
178
8.6
Advantages of Isolated Mode over Contact Mode
180
8.7
Concluding Discussion
184
8.8
Outlook
185
Acknowledgments
186
References
186
9.
Applying Super-Resolution Imaging Techniques to Problems in
Single-Molecule
SERS
193
Eric J. Titus and
Katherine
A. Willets
9.1
Introduction
193
9.1.1
Single-Molecule Surface-Enhanced Raman Scattering
(SM-SERS)
193
9.1.2
Super-Resolution Imaging
194
9.2
Experimental Considerations for Super-Resolution SM-SERS
195
9.2.1
Sample Preparation
195
9.2.2
Instrument Set-up
196
9.2.3
Camera Pixels and Theoretical Uncertainties
197
9.2.4
Correlated Imaging and Spectroscopy in Super-Resolution
SM-SERS
198
9.2.5
Correlated Optical and Structural Data
199
9.3
Super-Resolution SM-SERS Analysis
200
9.3.1
Mechanical Drift Correction
201
9.3.2
Analysis of Background Nanoparticle Luminescence
202
9.3.3
Calculating the SM-SERS Centroid Position
202
9.4
Super-Resolution SM-SERS Examples
204
9.4.1
Mapping SM-SERS Hot Spots
204
9.4.2
The Role of Plasmon-Enhanced Electromagnetic Fields:
Structure Correlation Studies
206
9.4.3
The Role of the Molecule: Isotope-Edited Studies
210
9.5
Conclusions
214
References
214
Contents
ix
10.
Lithographically-Fabricated
SERS
Substrates: Double Resonances,
Nanogaps, and Beamed Emission
219
Kenneth B. Crozier, Wenqi Zhu, Yizhuo
Chu, Dongxing
Wang
and Mohamad Banaee
10.1
Introduction
219
10.2
Double Resonance
SERS
Substrates
220
10.3
Lithographically-Fabricated Nanogap Dimers
226
10.4
Beamed Raman Scattering
229
10.5
Conclusions
238
References
239
11.
Plasmon-Enhanced Scattering and Fluorescence Used for Ultrasensitive
Detection in Langmuir-Blodgett Monolayers
243
Diogo
Volpati,
Aisha Alsaleh, Carlos J.
L
Constantino and
Ricardo E Aroca
11.1
Introduction
243
11.2
Surface-Enhanced Resonance Raman Scattering of Tagged
Phospholipids
245
И.2.1
Experimental Details
245
11.2.2
Langmuir and LB films
246
11.2.3
Electronic Absorption
247
11.2.4
Characteristic Vibrational Modes of the Tagged Phospholipid
248
11.2.5
Single Molecule Detection
250
11.3
Shell-Isolated Nanoparticle Enhanced Fluorescence (SHINEF)
251
И
.3.1
Tuning the Enhancement Factor in SHINEF
251
11.3.2
SHINEF of Fluorescein-DHPE
253
11.4
Conclusions
254
Acknowledgments
255
References
255
12.
SERS
Analysis of Bacteria, Human Blood, and Cancer Cells:
a Metabolomic and Diagnostic
Tooi
257
W.
Ranjith
Premašili,
Paul Lender, Ying Chen, Yoseph Gebregziabher
and Lawrence D. Ziegler
12.1
Introduction
257
12.2
SERS
of Bacterial Cells: Methodology and Diagnostics
258
12.3
Characteristics of
SERS
Spectra of Bacteria
261
12.4
PCA Barcode Analysis
263
12.5
Biological Origins of Bacterial
SERS
Signatures
265
12.6
SERS
Bacterial Identification in Human Body Fluids:
Bacteremia and
UTI
Diagnostics
266
χ
Contents
12.7
Red Blood Cells and Hemoglobin: Blood Aging and Disease Detection
267
12.8
SERS
of Whole Blood
269
12.9
SERSofRBCs
271
12.10
Malaria Detection
273
12.11
Cancer Cell Detection: Metabolic Profiling by
SERS
273
12.12
Conclusions
276
Acknowledgment
277
References
277
13.
SERS
in Cells: from Concepts to Practical Applications
285
Janina
Kneipp
and
Daniela Drescher
13.1
Introduction
285
13.2
SERS
Labels and
SERS
Nanoprobes: Different Approaches to Obtain
Different Information
286
13.2.1
Highlighting Cellular Substructures with
SERS
Labels
286
13.2.2
Probing Intrinsic Cellular Biochemistry with
SERS
Nanoprobes
288
13.3
Consequences of Endocytotic Uptake and Processing for Intrinsic
SERS
Probing in Cells
289
13.4
Quantification of Metal Nanoparticles in Cells
292
13.5
Toxicity
Considerations
295
13.6
Applications
298
13.6.1 pH
Nanosensors for Studies in Live Cells
298
13.6.2
Following Cell Division with
SERS
299
Acknowledgment
301
References
301
Index
309
FRONTIERS OF
SURFACE-ENHANCED
RAMAN
SCATTERING
SINGLE NANOPARTICLES AND SINGLE CELLS
ľi !
ГО
R
YU
ΚΙ Η
I
RO OZAKI,
School of
Science
&
Technology, Kwansei Gakuin University, Japan
KATRIN KNEIPP,
Department
of Physics, Technical University of Denmark, Denmark
RICARDO AROCA,
Department of Chemistry
&
Biochemistry, University of Windsor, Canada
Surface-enhanced Raman scattering
(SERS)
has flourished for nearly four decades and today it is a vibrant,
quintessential embodiment of nanoscience and nanotechnology with a broad range of applications.
The current level of understanding of
SERS
is now well advanced and as a consequence researchers are
beginning to formulate strategies for exploiting
SERS as a
general platform for chemical and biological
analysis, with unprecedented routine levels of sensitivity, specificity and reproducibility.
Written by internationally-recognised experts, this text
•
Provides comprehensive coverage of the theory, instrumentation and applications or
SERS.
•
Presents new research fields of this key analytical technique including:
•
single molecule detection;
•
nanoparticle analysis;
•
single cell and bacterial diagnostics;
•
the detection of biomolecules and biomolecuiar complexes.
•
Aims to convey to the reader the enthusiasm of researchers in this field.
This text is relevant to those involved in diagnostic tools for nanomedicine and synthesis as well as materials
scientists working in the area of the characterization of nanopartides.
It is the authors hope that this book will not only be useful but enjoyable to read. Their wish is that it
inspires its readers to try novel and exciting
SERS
research.
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV041852023 |
callnumber-first | Q - Science |
callnumber-label | QC454 |
callnumber-raw | QC454.R36 |
callnumber-search | QC454.R36 |
callnumber-sort | QC 3454 R36 |
callnumber-subject | QC - Physics |
classification_rvk | UP 9200 VG 9300 |
ctrlnum | (OCoLC)878185709 (DE-599)BVBBV041852023 |
dewey-full | 543/.57 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 543 - Analytical chemistry |
dewey-raw | 543/.57 |
dewey-search | 543/.57 |
dewey-sort | 3543 257 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Physik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01817nam a2200433 c 4500</leader><controlfield tag="001">BV041852023</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160216 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">140519s2014 xxkad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">013037278</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118359020</subfield><subfield code="9">978-1-118-35902-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)878185709</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041852023</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC454.R36</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">543/.57</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 9200</subfield><subfield code="0">(DE-625)146454:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VG 9300</subfield><subfield code="0">(DE-625)147238:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Frontiers of surface-enhanced raman scattering</subfield><subfield code="b">single nanoparticles and single cells</subfield><subfield code="c">ed. by Yukihiro Ozaki ...</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Frontiers of surface enhanced raman scattering</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">Wiley</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 313 S., [18] Bl.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raman effect, Surface enhanced</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raman spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectrum analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ozaki, Yukihiro</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027296463&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027296463&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027296463</subfield></datafield></record></collection> |
id | DE-604.BV041852023 |
illustrated | Illustrated |
indexdate | 2024-12-24T04:07:22Z |
institution | BVB |
isbn | 9781118359020 |
language | English |
lccn | 013037278 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027296463 |
oclc_num | 878185709 |
open_access_boolean | |
owner | DE-703 DE-19 DE-BY-UBM |
owner_facet | DE-703 DE-19 DE-BY-UBM |
physical | XIII, 313 S., [18] Bl. Ill., graph. Darst. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Wiley |
record_format | marc |
spellingShingle | Frontiers of surface-enhanced raman scattering single nanoparticles and single cells Raman effect, Surface enhanced Surfaces (Physics) Raman spectroscopy Spectrum analysis |
title | Frontiers of surface-enhanced raman scattering single nanoparticles and single cells |
title_alt | Frontiers of surface enhanced raman scattering |
title_auth | Frontiers of surface-enhanced raman scattering single nanoparticles and single cells |
title_exact_search | Frontiers of surface-enhanced raman scattering single nanoparticles and single cells |
title_full | Frontiers of surface-enhanced raman scattering single nanoparticles and single cells ed. by Yukihiro Ozaki ... |
title_fullStr | Frontiers of surface-enhanced raman scattering single nanoparticles and single cells ed. by Yukihiro Ozaki ... |
title_full_unstemmed | Frontiers of surface-enhanced raman scattering single nanoparticles and single cells ed. by Yukihiro Ozaki ... |
title_short | Frontiers of surface-enhanced raman scattering |
title_sort | frontiers of surface enhanced raman scattering single nanoparticles and single cells |
title_sub | single nanoparticles and single cells |
topic | Raman effect, Surface enhanced Surfaces (Physics) Raman spectroscopy Spectrum analysis |
topic_facet | Raman effect, Surface enhanced Surfaces (Physics) Raman spectroscopy Spectrum analysis |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027296463&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027296463&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ozakiyukihiro frontiersofsurfaceenhancedramanscatteringsinglenanoparticlesandsinglecells AT ozakiyukihiro frontiersofsurfaceenhancedramanscattering |