Function classes on the unit disc an introduction

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Pavlović, Miroslav (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin De Gruyter 2014
Schriftenreihe:De Gruyter Studies in Mathematics 52
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Klappentext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000008cb4500
001 BV041569791
003 DE-604
005 20140911
007 t|
008 140117s2014 xx d||| |||| 00||| eng d
015 |a 13,N13  |2 dnb 
016 7 |a 1032801077  |2 DE-101 
020 |a 9783110281231  |c Gb. : EUR 119.95 (DE) (freier Pr.), EUR 123.40 (AT) (freier Pr.), sfr 161.00 (freier Pr.)  |9 978-3-11-028123-1 
020 |a 9783110281903  |9 978-3-11-028190-3 
020 |a 9783110281910  |9 978-3-11-028191-0 
024 3 |a 9783110281231 
035 |a (OCoLC)864646496 
035 |a (DE-599)DNB1032801077 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-19  |a DE-29T  |a DE-739  |a DE-634  |a DE-11  |a DE-20 
082 0 |a 515.9  |2 22/ger 
082 0 |a 510 
084 |a SK 600  |0 (DE-625)143248:  |2 rvk 
100 1 |a Pavlović, Miroslav  |e Verfasser  |0 (DE-588)104661472X  |4 aut 
245 1 0 |a Function classes on the unit disc  |b an introduction  |c Miroslav Pavlović 
263 |a 201312 
264 1 |a Berlin  |b De Gruyter  |c 2014 
300 |a XIII, 449 S.  |b graph. Darst.  |c 240 mm x 170 mm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a De Gruyter Studies in Mathematics  |v 52 
650 0 7 |a Analytische Funktion  |0 (DE-588)4142348-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Komplexe Funktion  |0 (DE-588)4217733-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Komplexe Funktion  |0 (DE-588)4217733-9  |D s 
689 0 1 |a Analytische Funktion  |0 (DE-588)4142348-3  |D s 
689 0 |5 DE-604 
830 0 |a De Gruyter Studies in Mathematics  |v 52  |w (DE-604)BV000005407  |9 52 
856 4 2 |m X:MVB  |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=4284947&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027015209&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027015209&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027015209 

Datensatz im Suchindex

_version_ 1819745816150016000
adam_text CONTENTS PREFACE VII 1 THE POISSON INTEGRAL AND HARDY SPACES 1 1.1 THE POISSON INTEGRAL 5 1.1.1 BOREL MEASURES AND THE SPACE H 1 6 1.2 SPACES H P AND L P (T) (P 1) 10 1.3 SPACED (P 1) 12 1.4 HARMONIC CONJUGATES 18 1.4.1 PRIVALOV-PLESSNER S THEOREM AND THE HILBERT OPERATOR 1.5 HARDY SPACES: BASIC PROPERTIES 22 1.5.1 RADIAL LIMITS AND MEAN CONVERGENCE 24 1.5.2 SPACE H 1 27 1.6 RIESZ PROJECTION THEOREM 29 1.6.1 ALEKSANDROV S THEOREM 33 FURTHER NOTES AND RESULTS 35 2 SUBHARMONIC FUNCTIONS AND HARDY SPACES 40 2.1 BASIC PROPERTIES OF SUBHARMONIC FUNCTIONS 40 2.1.1 MAXIMUM PRINCIPLE 42 2.2 PROPERTIES OF THE MEAN VALUES 42 2.3 RIESZ MEASURE 45 2.3.1 RIESZ REPRESENTATION FORMULA 47 2.4 FACTORIZATION THEOREMS 49 2.4.1 INNER-OUTER FACTORIZATION 50 2.5 SOME SHARP INEQUALITIES 52 2.6 HARDY-STEIN IDENTITIES 58 2.6.1 LACUNARY SERIES 60 2.7 SUBORDINATION PRINCIPLE 61 2.7.1 COMPOSITION WITH INNER FUNCTIONS 64 2.7.2 APPROXIMATION WITH INNER FUNCTIONS 68 FURTHER NOTES AND RESULTS 69 3 SUBHARMONIC BEHAVIOR AND MIXED NORM SPACES 74 3.1 QUASI-NEARLY SUBHARMONIC FUNCTIONS 74 3.2 REGULARLY OSCILLATING FUNCTIONS 75 3.3 MIXED NORM SPACES: DEFINITION AND BASIC PROPERTIES- 3.4 EMBEDDING THEOREMS 92 3.5 FRACTIONAL INTEGRATION 95 HTTP://D-NB.INFO/1032801077 X CONTENTS 3.6 WEIGHTED MIXED NORM SPACES 99 3.6.1 LACUNARY SERIES IN MIXED NORM SPACES 102 3.6.2 BERGMAN SPACES WITH RAPIDLY DECREASING WEIGHTS 102 3.6.3 MIXED NORM SPACES WITH SUBNORMAL WEIGHTS 105 3.7 L^-INTEGRABILITY OF LACUNARY POWER SERIES 109 3.7.1 LACUNARY SERIES IN C[0,1] 112 FURTHER NOTES AND RESULTS 114 4 TAYLOR COEFFICIENTS WITH APPLICATIONS 118 4.1 USING INTERPOLATION OF OPERATORS ON H P 118 4.1.1 AN EMBEDDINGTHEOREM 121 4.1.2 THE CASE OF MONOTONE COEFFICIENTS 126 4.2 STRONG CONVERGENCE IN H 1 129 4.2.1 GENERALIZATION TO (C, A)-CONVERGENCE 131 4.3 A (C,A)-MAXIMAL THEOREM 132 FURTHER NOTES AND RESULTS 135 5 BESOV SPACES 138 5.1 DECOMPOSITION OF BESOV SPACES: CASE 1 P O 138 5.2 MAXIMAL FUNCTION 140 5.3 DECOMPOSITION OF BESOV SPACES: CASE 0 P OO 143 5.3.1 RADIAL LIMITS OF HARDY-BLOCH FUNCTIONS 145 5.4 DUALITY IN THE CASE 0 P OO 149 5.5 EMBEDDINGS BETWEEN HARDY AND BESOV SPACES 155 5.6 BEST APPROXIMATION BY POLYNOMIALS 160 5.7 NORMAL BESOV SPACES 162 5.8 INNER FUNCTIONS IN BESOV AND HARDY-SOBOLEV SPACES 164 5.8.1 APPROXIMATION OF A SINGULAR INNER FUNCTION 164 5.8.2 HARDY-SOBOLEV SPACE S PLJP 170 5.8.3 F-PROPERTY AND K-PROPERTY 171 FURTHER NOTES AND RESULTS 172 6 THE DUAL OF H 1 AND SOME RELATED SPACES 175 6.1 NORMS ON BMOA 175 6.2 GARSIA S AND FEFFERMAN S THEOREMS 179 6.2.1 FEFFERMAN S DUALITY THEOREM 183 6.3 VANISHING MEAN OSCILLATION 183 6.4 BMOA AND 185 6.4.1 TAUBERIAN NATURE OF 8F.* 188 I/P 6.5 COEFFICIENTS OF BMOA FUNCTIONS 189 6.6 BLOCH SPACE 189 CONTENTS XI 6.7 MEAN GROWTH OF H P -BLOCH FUNCTIONS 192 6.8 COMPOSITION OPERATORS ON 23 AND BMOA 194 6.8.1 WEIGHTED BLOCH SPACES 197 6.9 PROOF OF THE BI-BLOCH LEMMA 202 FURTHER NOTES AND RESULTS 206 7 LITTLEWOOD-PALEY THEORY 211 7.1 VECTOR MAXIMAL THEOREMS AND CATDERON S AREA THEOREM 211 7.2 LITTLEWOOD-PALEY ^-THEOREM 213 7.3 APPLICATIONS OF THE (C,M)-MAXIMAL THEOREM 217 7.4 GENERALIZATION OF THE ^-THEOREM 222 7.5 PROOF OF CALDERON S THEOREM 224 7.6 LITTLEWOOD-PALEY INEQUALITIES 229 7.7 HYPERBOLIC HARDY CLASSES 235 FURTHER NOTES AND RESULTS 238 8 LIPSCHITZ SPACES OF FIRST ORDER 241 8.1 DEFINITIONS AND BASIC PROPERTIES 241 8.1.1 LIPSCHITZ SPACES OF ANALYTIC FUNCTIONS 246 8.1.2 MEAN LIPSCHITZ SPACES 247 8.2 LIPSCHITZ CONDITION FOR THE MODULUS 249 8.3 COMPOSITION OPERATORS 251 8.4 COMPOSITION OPERATORS INTO HA PA 254 8.5 INNER FUNCTIONS 260 FURTHER NOTES AND RESULTS 261 9 LIPSCHITZ SPACES OF HIGHER ORDER 264 9.1 MODULI OF SMOOTHNESS AND RELATED SPACES 264 9.2 LIPSCHITZ SPACES AND SPACES OF HARMONIC FUNCTIONS 267 9.3 CONJUGATE FUNCTIONS 275 9.4 INTEGRATED MEAN LIPSCHITZ SPACES 278 9.4.1 GENERALIZED LIPSCHITZ SPACES 280 9.5 INVARIANT BESOV SPACES 284 9.6 BMO-TYPE CHARACTERIZATIONS OF LIPSCHITZ SPACES 286 9.6.1 DIVISION AND MULTIPLICATION BY INNER FUNCTIONS 290 FURTHER NOTES AND RESULTS 291 10 ONE-TO-ONE MAPPINGS 294 10.1 INTEGRAL MEANS OF UNIVALENT FUNCTIONS 294 10.1.1 DISTORTION THEOREMS 295 10.2 MEMBERSHIP OF UNIVALENT FUNCTIONS IN SOME FUNCTION CLASSES 298 XII CONTENTS 10.3 QUASICONFORMAL HARMONIC MAPPINGS 304 10.3.1 BOUNDARY BEHAVIOR OF QCH HOMEOMORPHISMS OF THE DISK 304 10.4 H P -CLASSES OF QUASICONFORMAL MAPPINGS 312 FURTHER NOTES AND RESULTS 315 11 COEFFICIENTS MULTIPLIERS 318 11.1 MULTIPLIERS ON ABSTRACT SPACES 318 11.1.1 COMPACT MULTIPLIERS 323 11.2 MULTIPLIERS FOR HARDY AND BERGMAN SPACES 324 11.2.1 MULTIPLIERS FROM H 1 TO BMOA 327 11.3 SOLID SPACES 329 11.3.1 SOLID HULL OF HARDY SPACES (0 P 1) 331 11.4 MULTIPLIERS BETWEEN BESOV SPACES 332 11.4.1 MONOTONE MULTIPLIERS 335 11.5 MULTIPLIERS OF SPACES WITH SUBNORMAL WEIGHTS 337 11.6 SOME APPLICATIONS TO COMPOSITION OPERATORS 348 FURTHER NOTES AND RESULTS 349 12 TOWARD A THEORY OF VECTOR-VALUED SPACES 352 12.1 SOME PROPERTIES OF ADMISSIBLE SPACES 352 12.2 SUBHARMONIC BEHAVIOR OF ||F(Z)|| X 359 12.2.1 BANACH ENVELOPE OF H P (X), 0 P 1 362 12.3 LINEAR OPERATORS ON HARDY AND BERGMAN SPACES 364 12.4 PROOF OF THE COIFMAN-ROCHBERG THEOREM 369 FURTHER NOTES AND RESULTS 374 A QUASI-BANACH SPACES 375 A.L QUASI-BANACH SPACES 375 A.2 Q-BANACH ENVELOPES 376 A.3 CLOSED GRAPH THEOREM 379 A.4 F-SPACES 382 A.4.1 NEVANLINNA CLASS 382 A.5 SPACES P 383 A.6 LACUNARY SERIES IN QUASI-BANACH SPACES * A.6.1 L P -INTEGRABILITY OF LACUNARY SERIES ON (0,1) FURTHER NOTES AND RESULTS 395 B INTERPOLATION AND MAXIMAL FUNCTIONS 397 B.L RIESZ-THORIN THEOREM 397 B.2 WEAK L P -SPACES AND MARCINKIEWICZ S THEOREM 399 B.3 CLASSICAL MAXIMAL FUNCTIONS 403 B.4 RADEMACHER FUNCTIONS AND KHINTCHIN S INEQUALITY 409 * 384 385 CONTENTS XIII B.5 NIKISHIN S THEOREM 410 B.6 NIKISHIN-STEIN S THEOREM 412 B.7 BANACH S PRINCIPLE AND THE THEOREM ON A.E. CONVERGENCE 415 B.8 VECTOR-VALUED MAXIMAL THEOREM 417 FURTHER NOTES AND RESULTS 418 BIBLIOGRAPHY 421 INDEX 443 The monograph contains a study on various function classes, a number of new results and new or easy proofs of old results (Feff er man-Stein theorem on subharmonic behavior, theorems on conjugate functions and fractional integration on Bergman spaces, Feffer- man s duality theorem), which might be interesting for specialists; applications of the Hardy-Littlewood inequalities on Taylor coefficients to (C, öt)-maximal theorems and (C, r/)-convergence; a study of BMOA, due to Knese, based only on Green s formula; the problem of membership of singular inner functions in Besov and Hardy-Sobolev spaces; a full discussion on g-function (all p > 0) and Calderóni area theorem; a new proof, due to Astala and Koskela, of the Littlewood-Paley inequality for univalent functions; and new results and proofs on Lipschitz spaces, coefficient multipliers and duality, including compact multipliers and multipliers on spaces with non-normal weights. It also contains a discussion on analytic functions and lacunary series with values in quasi-Banach spaces with applications to function spaces and composition operators. Sixteen open questions are posed.
any_adam_object 1
author Pavlović, Miroslav
author_GND (DE-588)104661472X
author_facet Pavlović, Miroslav
author_role aut
author_sort Pavlović, Miroslav
author_variant m p mp
building Verbundindex
bvnumber BV041569791
classification_rvk SK 600
ctrlnum (OCoLC)864646496
(DE-599)DNB1032801077
dewey-full 515.9
510
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
510 - Mathematics
dewey-raw 515.9
510
dewey-search 515.9
510
dewey-sort 3515.9
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02260nam a22004818cb4500</leader><controlfield tag="001">BV041569791</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140911 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">140117s2014 xx d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">13,N13</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1032801077</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110281231</subfield><subfield code="c">Gb. : EUR 119.95 (DE) (freier Pr.), EUR 123.40 (AT) (freier Pr.), sfr 161.00 (freier Pr.)</subfield><subfield code="9">978-3-11-028123-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110281903</subfield><subfield code="9">978-3-11-028190-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110281910</subfield><subfield code="9">978-3-11-028191-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110281231</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864646496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1032801077</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pavlović, Miroslav</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)104661472X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Function classes on the unit disc</subfield><subfield code="b">an introduction</subfield><subfield code="c">Miroslav Pavlović</subfield></datafield><datafield tag="263" ind1=" " ind2=" "><subfield code="a">201312</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 449 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">240 mm x 170 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Studies in Mathematics</subfield><subfield code="v">52</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Funktion</subfield><subfield code="0">(DE-588)4142348-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Funktion</subfield><subfield code="0">(DE-588)4217733-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Komplexe Funktion</subfield><subfield code="0">(DE-588)4217733-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Analytische Funktion</subfield><subfield code="0">(DE-588)4142348-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter Studies in Mathematics</subfield><subfield code="v">52</subfield><subfield code="w">(DE-604)BV000005407</subfield><subfield code="9">52</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=4284947&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=027015209&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=027015209&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027015209</subfield></datafield></record></collection>
id DE-604.BV041569791
illustrated Illustrated
indexdate 2024-12-24T03:59:30Z
institution BVB
isbn 9783110281231
9783110281903
9783110281910
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027015209
oclc_num 864646496
open_access_boolean
owner DE-19
DE-BY-UBM
DE-29T
DE-739
DE-634
DE-11
DE-20
owner_facet DE-19
DE-BY-UBM
DE-29T
DE-739
DE-634
DE-11
DE-20
physical XIII, 449 S. graph. Darst. 240 mm x 170 mm
publishDate 2014
publishDateSearch 2014
publishDateSort 2014
publisher De Gruyter
record_format marc
series De Gruyter Studies in Mathematics
series2 De Gruyter Studies in Mathematics
spellingShingle Pavlović, Miroslav
Function classes on the unit disc an introduction
De Gruyter Studies in Mathematics
Analytische Funktion (DE-588)4142348-3 gnd
Komplexe Funktion (DE-588)4217733-9 gnd
subject_GND (DE-588)4142348-3
(DE-588)4217733-9
title Function classes on the unit disc an introduction
title_auth Function classes on the unit disc an introduction
title_exact_search Function classes on the unit disc an introduction
title_full Function classes on the unit disc an introduction Miroslav Pavlović
title_fullStr Function classes on the unit disc an introduction Miroslav Pavlović
title_full_unstemmed Function classes on the unit disc an introduction Miroslav Pavlović
title_short Function classes on the unit disc
title_sort function classes on the unit disc an introduction
title_sub an introduction
topic Analytische Funktion (DE-588)4142348-3 gnd
Komplexe Funktion (DE-588)4217733-9 gnd
topic_facet Analytische Funktion
Komplexe Funktion
url http://deposit.dnb.de/cgi-bin/dokserv?id=4284947&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027015209&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027015209&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000005407
work_keys_str_mv AT pavlovicmiroslav functionclassesontheunitdiscanintroduction