An introduction to Markov processes

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Stroock, Daniel W. 1940- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin ; Heidelberg Springer [2014]
Ausgabe:Second edition
Schriftenreihe:Graduate texts in mathematics 230
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV041403418
003 DE-604
005 20220330
007 t|
008 131107s2014 gw |||| 00||| eng d
020 |a 9783642405228  |c hardcover  |9 978-3-642-40522-8 
020 |a 9783662517826  |c softcover  |9 978-3-662-51782-6 
035 |a (OCoLC)864305294 
035 |a (DE-599)BVBBV041403418 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a gw  |c XA-DE-BE 
049 |a DE-384  |a DE-188  |a DE-706  |a DE-11  |a DE-19  |a DE-29T  |a DE-83  |a DE-739 
050 0 |a QA274.7 
082 0 |a 519.233 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a MAT 607f  |2 stub 
084 |a 510  |2 sdnb 
084 |a 17,1  |2 ssgn 
100 1 |a Stroock, Daniel W.  |d 1940-  |e Verfasser  |0 (DE-588)130519561  |4 aut 
245 1 0 |a An introduction to Markov processes  |c Daniel W. Stroock 
250 |a Second edition 
264 1 |a Berlin ; Heidelberg  |b Springer  |c [2014] 
264 4 |c © 2014 
300 |a xvii, 203 Seiten 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Graduate texts in mathematics  |v 230 
650 4 |a Markov-Prozess 
650 4 |a Markov processes 
650 0 7 |a Markov-Prozess  |0 (DE-588)4134948-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Markov-Prozess  |0 (DE-588)4134948-9  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-642-40523-5 
830 0 |a Graduate texts in mathematics  |v 230  |w (DE-604)BV000000067  |9 230 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026850878&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-026850878 

Datensatz im Suchindex

DE-19_call_number 1601/SK 820 S924 I6(2)
DE-19_location 95
DE-BY-UBM_katkey 4985261
DE-BY-UBM_media_number 41623353460013
_version_ 1823055465110568960
adam_text Contents 1 Random Walks, a Good Place to Begin................................................ 1.1 Nearest Neighbor Random Walks on Z.......................................... 1.1.1 Distribution at Time n......................................................... 1.1.2 Passage Times via the Reflection Principle....................... 1.1.3 Some Related Computations................................................ 1.1.4 Time of First Return............................................................ 1.1.5 Passage Times via Functional Equations.......................... 1.2 Recurrence Properties of Random Walks...................................... 1.2.1 Random Walks on Zd......................................................... 1.2.2 An Elementary Recurrence Criterion................................ 1.2.3 Recurrence of Symmetric Random Walk in Z2................ 1.2.4 Transience in Z3................................................................... 1.3 Exercises............................................................................................ 1 1 2 3 4 7 8 9 9 10 12 14 17 2 Doeblin’s Theory for Markov Chains................................................... 2.1 Some Generalities............................................................................. 2.1.1 Existence of Markov Chains................................................ 2.1.2 Transition Probabilities Probability Vectors................ 2.1.3 Transition Probabilities and Functions ............................. 2.1.4 The Markov Property......................................................... 2.2 Doeblin’s Theory ............................................................................. 2.2.1 Doeblin’s Basic Theorem................................................... 2.2.2 A Couple of Extensions...................................................... 2.3 Elements of Ergodic Theory............................................................. 2.3.1 The Mean Ergodic Theorem................................................ 2.3.2 Return Times......................................................................... 2.3.3 Identification of π................................................................ 2.4 Exercises............................................................................................. 25 25 26 27 28 30 30 30 33 35 36 37 41 43 3 Stationary Probabilities................................. 3.1 Classification of States....................................................................... 3.1.1 Classification, Recurrence, and Transience...................... 49 49 50 xiii Contents xiv 4 3.1.2 Criteria for Recurrence and Transience............................. 3.1.3 Periodicity............................................................................. 3.2 Computation of Stationary Probabilities.......................................... 3.2.1 Preliminary Results.............................................................. 3.2.2 Computations via Linear Algebra........................................ 3.3 Wilson’s Algorithm and Kirchhoff’s Formula................................ 3.3.1 Spanning Trees and Wilson Runs........................................ 3.3.2 Wilson’s Algorithm............................................................. 3.3.3 Kirchhoff’s Matrix Tree Theorem...................................... 3.4 Exercises............................................................................................. 52 56 58 58 59 64 64 65 68 69 More About the Ergodic Properties of Markov Chains.................... 73 74 74 75 78 80 82 84 85 90 91 4.1 Ergodic Theory Without Doeblin.................................................... 4.1.1 Convergence of Matrices ................................................... 4.1.2 Abel Convergence................................................................. 4.1.3 Structure of Stationary Distributions................................. 4.1.4 A Digression About Moments of Return Times................. 4.1.5 A Small Improvement.......................................................... 4.1.6 The Mean Ergodic Theorem Again.................................... 4.1.7 A Refinement in the Aperiodic Case ................................. 4.1.8 Periodic Structure................................................................. 4.2 Exercises............................................................................................. 5 Markov Processes in Continuous Time.................................................. 5.1 Poisson Processes............................................................................. 5.1.1 The Simple Poisson Process................................................. 5.1.2 Compound Poisson Processes on ................................ 5.2 Markov Processes with Bounded Rates.......................................... 5.2.1 Basic Construction................................................................ 5.2.2 An Alternative Construction................................................ 5.2.3 Distribution of Jumps and Jump Times.............................. 5.2.4 Kolmogorov’s Forward and Backward Equations.............. 5.3 Unbounded Rates............................................................................. 5.3.1 Explosion ............................................................... 5.3.2 Criteria for Non-explosion or Explosion.......................... 5.3.3 What to Do when Explosion Occurs ................................. 5.4 Ergodic Properties............................................................................ 5.4.1 Classification of States......................................................... 5.4.2 Stationary Measures and Limit Theorems........................... 5.4.3 Interpreting and Computing пц......................................... 5.5 Exercises............................................................................................. 6 Reversible Markov Processes................................................................... 6.1 Reversible Markov Chains................................................................ 6.1.1 Reversibility from Invariance............................................. 6.1.2 Measurements in Quadratic Mean...................................... 99 99 99 102 104 105 108 Ill 112 114 114 120 122 122 123 126 129 130 137 138 138 139 xv Contents 6.1.3 The Spectral Gap ................................................................ 6.1.4 Reversibility and Periodicity ............................................. 6.1.5 Relation to Convergence in Variation................................ Dirichlet Forms and Estimation of ß ............................................. 6.2.1 The Dirichlet Form and Poincare’s Inequality................... 6.2.2 Estimating ß+...................................................................... 6.2.3 Estimating ß~...................................................................... Reversible Markov Processes in Continuous Time...................... 6.3.1 Criterion for Reversibility.................................................... 6.3.2 Convergence in L2(π) for Bounded Rates....................... 6.3.3 L2(Æ)-Convergence Rate in General................................. 6.3.4 Estimating λ.......................................................................... Gibbs States and Glauber Dynamics............................................... 6.4.1 Formulation .......................................................................... 6.4.2 The Dirichlet Form ............................................................. Simulated Annealing......................................................................... 6.5.1 The Algorithm....................................................................... 6.5.2 Construction of the Transition Probabilities....................... 6.5.3 Description of the Markov Process.................................... 6.5.4 Choosing a Cooling Schedule............................................. 6.5.5 Small Improvements............................................................. Exercises............................................................................................ 141 143 144 145 146 148 150 151 151 152 154 157 157 158 159 162 163 164 166 166 169 170 A Minimal Introduction to Measure Theory........................................ A Description of Lebesgue’s Measure Theory ............................ 7.1.1 Measure Spaces.................................................................... 7.1.2 Some Consequences of Countable Additivity .................... 7.1.3 Generating σ-Algebras....................................................... 7.1.4 Measurable Functions.......................................................... 7.1.5 Lebesgue Integration .......................................................... 7.1.6 Stability Properties of Lebesgue Integration .................... 7.1.7 Lebesgue Integration on Countable Spaces....................... 7.1.8 Fubini’s Theorem................................................................. Modeling Probability ..................................................................... 7.2.1 Modeling Infinitely Many Tosses of a Fair Coin.............. Independent Random Variables...................................................... 7.3.1 Existence of Lots of Independent Random Variables . . . Conditional Probabilities and Expectations................................... 7.4.1 Conditioning with Respect to Random Variables.............. 179 179 179 181 182 183 184 186 188 190 192 193 194 194 196 198 References.............................................................................................................. 199 Index........................................................................................................................ 201 6.2 6.3 6.4 6.5 6.6 7 7.1 7.2 7.3 7.4
any_adam_object 1
author Stroock, Daniel W. 1940-
author_GND (DE-588)130519561
author_facet Stroock, Daniel W. 1940-
author_role aut
author_sort Stroock, Daniel W. 1940-
author_variant d w s dw dws
building Verbundindex
bvnumber BV041403418
callnumber-first Q - Science
callnumber-label QA274
callnumber-raw QA274.7
callnumber-search QA274.7
callnumber-sort QA 3274.7
callnumber-subject QA - Mathematics
classification_rvk SK 820
classification_tum MAT 607f
ctrlnum (OCoLC)864305294
(DE-599)BVBBV041403418
dewey-full 519.233
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.233
dewey-search 519.233
dewey-sort 3519.233
dewey-tens 510 - Mathematics
discipline Mathematik
edition Second edition
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01814nam a2200481 cb4500</leader><controlfield tag="001">BV041403418</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220330 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">131107s2014 gw |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642405228</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-3-642-40522-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662517826</subfield><subfield code="c">softcover</subfield><subfield code="9">978-3-662-51782-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864305294</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041403418</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.233</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 607f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stroock, Daniel W.</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130519561</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to Markov processes</subfield><subfield code="c">Daniel W. Stroock</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 203 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">230</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov-Prozess</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov-Prozess</subfield><subfield code="0">(DE-588)4134948-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-40523-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">230</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">230</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026850878&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026850878</subfield></datafield></record></collection>
id DE-604.BV041403418
illustrated Not Illustrated
indexdate 2025-02-03T17:41:49Z
institution BVB
isbn 9783642405228
9783662517826
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-026850878
oclc_num 864305294
open_access_boolean
owner DE-384
DE-188
DE-706
DE-11
DE-19
DE-BY-UBM
DE-29T
DE-83
DE-739
owner_facet DE-384
DE-188
DE-706
DE-11
DE-19
DE-BY-UBM
DE-29T
DE-83
DE-739
physical xvii, 203 Seiten
publishDate 2014
publishDateSearch 2014
publishDateSort 2014
publisher Springer
record_format marc
series Graduate texts in mathematics
series2 Graduate texts in mathematics
spellingShingle Stroock, Daniel W. 1940-
An introduction to Markov processes
Graduate texts in mathematics
Markov-Prozess
Markov processes
Markov-Prozess (DE-588)4134948-9 gnd
subject_GND (DE-588)4134948-9
title An introduction to Markov processes
title_auth An introduction to Markov processes
title_exact_search An introduction to Markov processes
title_full An introduction to Markov processes Daniel W. Stroock
title_fullStr An introduction to Markov processes Daniel W. Stroock
title_full_unstemmed An introduction to Markov processes Daniel W. Stroock
title_short An introduction to Markov processes
title_sort an introduction to markov processes
topic Markov-Prozess
Markov processes
Markov-Prozess (DE-588)4134948-9 gnd
topic_facet Markov-Prozess
Markov processes
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026850878&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000000067
work_keys_str_mv AT stroockdanielw anintroductiontomarkovprocesses