An introduction to Rota-Baxter algebra

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Guo, Li (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Somerville, Mass. [u.a.] Internat. Press [u.a.] 2012
Schriftenreihe:Surveys of modern mathematics 4
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV041367438
003 DE-604
005 20131029
007 t|
008 131018s2012 xx d||| |||| 00||| eng d
020 |a 9781571462534  |9 978-1-57146-253-4 
035 |a (OCoLC)852647110 
035 |a (DE-599)OBVAC09574575 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-29T 
100 1 |a Guo, Li  |e Verfasser  |4 aut 
245 1 0 |a An introduction to Rota-Baxter algebra  |c Li Guo 
264 1 |a Somerville, Mass. [u.a.]  |b Internat. Press [u.a.]  |c 2012 
300 |a X, 226 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Surveys of modern mathematics  |v 4 
500 |a Literaturverz. S. [211] - 221 
650 0 7 |a Algebraischer Ring  |0 (DE-588)4141855-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Freie Algebra  |0 (DE-588)4155280-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Algebraischer Ring  |0 (DE-588)4141855-4  |D s 
689 0 1 |a Freie Algebra  |0 (DE-588)4155280-5  |D s 
689 0 |5 DE-604 
830 0 |a Surveys of modern mathematics  |v 4  |w (DE-604)BV041123344  |9 4 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026815682&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-026815682 

Datensatz im Suchindex

_version_ 1819670008227168256
adam_text Titel: An introduction to Rota-Baxter algebra Autor: Guo, Li Jahr: 2012 Contents Preface ................................................vii Leitfaden .............................................. xi Part I The Operator Aspect of Rota-Baxter Algebra 1 Spitzer’s Identity ..................................... 3 1.1 Basic definitions, examples and properties................. 4 1.2 Complete Rota-Baxter algebras......................... 19 1.3 Formulations of Spitzer’s identity, old and new............. 22 1.4 Atkinson’s multiplicative decomposition and the algebraic Bogoliubov map.................................... 39 1.5 Some related literature and problems.................... 43 2 Connected Hopf Algebras and Rota-Baxter Algebras....... 47 2.1 Algebras and modules revisited......................... 48 2.2 Coalgebras and bialgebras............................ 50 2.3 Connected bialgebra and Hopf algebra.................... 54 2.4 Algebraic Birkhoff decomposition....................... 62 2.5 Some related literature and problems.................... 69 Part II The Structure Aspect of Rota-Baxter Algebra 3 Free Commutative Rota-Baxter Algebras and Shuffle Products............................................ 73 3.1 Shuffle product and generalizations...................... 74 3.2 Free commutative Rota-Baxter algebras.................. 92 3.3 Rota-Baxter algebras, Stirling numbers and partitions........107 3.4 Some related literature and problems....................116 vi Contents 4 Free Noncommutative Rota-Baxter Algebras and Rooted Trees........................................119 4.1 The Rota-Baxter algebra of trees.......................120 4.2 Free Rota-Baxter algebra on a set.......................128 4.3 Unitarization of Rota-Baxter algebras....................147 4.4 Free Rota-Baxter algebra on an algebra...................151 4.5 Some related literature and problems.....................163 Part III The Operad Aspect of Rota-Baxter Algebra 5 Rota-Baxter Algebras and Dendriform Algebras........ • 167 5.1 Concepts and basic properties..........................168 5.2 Free objects in the commutative case and shuffle products.....171 5.3 Universal enveloping algebras of tridendriform algebras.......177 5.4 Free dendriform, tridendriform algebras and free Rota-Baxter algebras................................180 5.5 Some related literature and problems....................190 6 Rota-Baxter Operators on Operads and Manin Products • • • 191 6.1 Nonsymmetric operads...............................192 6.2 Products of binary quadratic NS operads..................196 6.3 Binary quadratic ns operads from linear operators...........204 6.4 Some related literature and problems....................209 Bibliography...........................................211 Index.................................................223
any_adam_object 1
author Guo, Li
author_facet Guo, Li
author_role aut
author_sort Guo, Li
author_variant l g lg
building Verbundindex
bvnumber BV041367438
ctrlnum (OCoLC)852647110
(DE-599)OBVAC09574575
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01398nam a2200361 cb4500</leader><controlfield tag="001">BV041367438</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131029 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">131018s2012 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781571462534</subfield><subfield code="9">978-1-57146-253-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852647110</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC09574575</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Li</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to Rota-Baxter algebra</subfield><subfield code="c">Li Guo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Somerville, Mass. [u.a.]</subfield><subfield code="b">Internat. Press [u.a.]</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 226 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Surveys of modern mathematics</subfield><subfield code="v">4</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. [211] - 221</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraischer Ring</subfield><subfield code="0">(DE-588)4141855-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Freie Algebra</subfield><subfield code="0">(DE-588)4155280-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraischer Ring</subfield><subfield code="0">(DE-588)4141855-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Freie Algebra</subfield><subfield code="0">(DE-588)4155280-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Surveys of modern mathematics</subfield><subfield code="v">4</subfield><subfield code="w">(DE-604)BV041123344</subfield><subfield code="9">4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026815682&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026815682</subfield></datafield></record></collection>
id DE-604.BV041367438
illustrated Illustrated
indexdate 2024-12-24T03:54:55Z
institution BVB
isbn 9781571462534
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-026815682
oclc_num 852647110
open_access_boolean
owner DE-29T
owner_facet DE-29T
physical X, 226 S. graph. Darst.
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher Internat. Press [u.a.]
record_format marc
series Surveys of modern mathematics
series2 Surveys of modern mathematics
spellingShingle Guo, Li
An introduction to Rota-Baxter algebra
Surveys of modern mathematics
Algebraischer Ring (DE-588)4141855-4 gnd
Freie Algebra (DE-588)4155280-5 gnd
subject_GND (DE-588)4141855-4
(DE-588)4155280-5
title An introduction to Rota-Baxter algebra
title_auth An introduction to Rota-Baxter algebra
title_exact_search An introduction to Rota-Baxter algebra
title_full An introduction to Rota-Baxter algebra Li Guo
title_fullStr An introduction to Rota-Baxter algebra Li Guo
title_full_unstemmed An introduction to Rota-Baxter algebra Li Guo
title_short An introduction to Rota-Baxter algebra
title_sort an introduction to rota baxter algebra
topic Algebraischer Ring (DE-588)4141855-4 gnd
Freie Algebra (DE-588)4155280-5 gnd
topic_facet Algebraischer Ring
Freie Algebra
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026815682&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV041123344
work_keys_str_mv AT guoli anintroductiontorotabaxteralgebra