Statistical analysis of financial data in R

Gespeichert in:
Bibliographische Detailangaben
Vorheriger Titel:Carmona, René Statistical analysis of financial data in S-PLUS
1. Verfasser: Carmona, René 1947- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York [u.a.] Springer 2014
Ausgabe:2. ed.
Schriftenreihe:Springer texts in statistics
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV041352122
003 DE-604
005 20201015
007 t
008 131010s2014 d||| |||| 00||| eng d
020 |a 9781461487876  |c hbk  |9 978-1-4614-8787-6 
020 |a 9781493938353  |c pbk  |9 978-1-4939-3835-3 
020 |a 9781461487876  |c ebk  |9 978-1-4614-8787-6 
035 |a (OCoLC)871570133 
035 |a (DE-599)BVBBV041352122 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-521  |a DE-11  |a DE-861  |a DE-523  |a DE-863  |a DE-703 
050 0 |a HG106 
082 0 |a 332/.01/51955  |2 22 
084 |a QP 890  |0 (DE-625)141965:  |2 rvk 
084 |a SK 840  |0 (DE-625)143261:  |2 rvk 
084 |a SK 850  |0 (DE-625)143263:  |2 rvk 
084 |a DAT 368f  |2 stub 
084 |a WIR 522f  |2 stub 
084 |a WIR 651f  |2 stub 
084 |a MAT 620f  |2 stub 
100 1 |a Carmona, René  |d 1947-  |e Verfasser  |0 (DE-588)122405668  |4 aut 
245 1 0 |a Statistical analysis of financial data in R  |c René A. Carmona 
250 |a 2. ed. 
264 1 |a New York [u.a.]  |b Springer  |c 2014 
300 |a xvii, 588 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Springer texts in statistics 
630 0 4 |a S-Plus 
650 4 |a Finances - Modèles mathématiques 
650 4 |a Finances - Modèles économétriques 
650 7 |a Finanças (modelos matemáticos)  |2 larpcal 
650 7 |a Matemática financeira  |2 larpcal 
650 7 |a Portfolio-analyse  |2 gtt 
650 7 |a S-Plus  |2 gtt 
650 7 |a Statistische analyse  |2 gtt 
650 7 |a Wiskundige modellen  |2 gtt 
650 4 |a Mathematisches Modell 
650 4 |a Ökonometrisches Modell 
650 4 |a Finance  |x Econometric models 
650 4 |a Finance  |x Mathematical models 
650 0 7 |a S-PLUS  |0 (DE-588)4321162-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Wirtschaftsmathematik  |0 (DE-588)4066472-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Wirtschaftsmathematik  |0 (DE-588)4066472-7  |D s 
689 0 1 |a S-PLUS  |0 (DE-588)4321162-8  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-1-4614-8788-3 
780 0 0 |i 1. Auflage  |a Carmona, René  |t Statistical analysis of financial data in S-PLUS 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026800675&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-026800675 

Datensatz im Suchindex

DE-BY-862_location 2000
DE-BY-863_location 1000
DE-BY-FWS_call_number 1000/SK 850 C287(2)
2000/SK 850 C287(2)
DE-BY-FWS_katkey 703945
DE-BY-FWS_media_number 083101414036
083000523917
_version_ 1806174235742175232
adam_text Titel: Statistical analysis of financial data in R Autor: Carmona, René Jahr: 2014 Contents Part I DATA EXPLORATION, ESTIMATION AND SIMULATION 1 1 UNIVARIATE DATA DISTRIBUTIONS 3 1.1 Probability Distributions and Their Parameters....................................3 1.1.1 Standard Probability Distribution Families..............................3 1.1.2 Estimation from Empirical Data................................................18 1.1.3 Quantiles and Q-Q Plots............................................................22 1.2 Observations and Nonparametric Density Estimation..........................31 1.2.1 Sample Data................................................................................31 1.2.2 Nonparametric Estimation..........................................................35 1.2.3 Histograms..................................................................................39 1.2.4 Kernel Density Estimation..........................................................41 1.2.5 Empirical Q-Q Plots....................................................................48 1.3 Monte Carlo Computations....................................................................49 1.3.1 Generating Random Samples in R............................................49 1.3.2 Limit Theorems and Monte Carlo Computations....................51 1.3.3 Home Grown Random Samples................................................60 Problems............................................................................................................62 Notes Complements......................................................................................67 2 HEAVY TAIL DISTRIBUTIONS 69 2.1 A Primer on Extreme Value Theory......................................................69 2.1.1 Empirical Evidence of Extreme Events....................................69 2.1.2 Pareto Distributions....................................................................71 2.1.3 Tidbits of Extreme Value Theory..............................................75 2.2 GEV GPD Parameter Estimation ......................................................83 2.2.1 The Method of L-Moments........................................................83 2.2.2 Maximum Likelihood Estimation..............................................90 2.2.3 An Example Chosen for Pedagogical Reasons........................93 2.2.4 Implementation of the Block-Maxima Method........................95 2.3 Semi Parametric Estimation....................................................................97 2.3.1 Threshold Exceedances..............................................................97 2.3.2 Semi Parametric Estimation......................................................100 2.3.3 The Example of the PCS Index Revisited................................102 2.3.4 The Example of the Weekly S P Returns................................106 Appendix: Risk Measures: Why and What For?............................................109 Problems............................................................................................................114 Notes Complements......................................................................................118 3 DEPENDENCE MULTIVARIATE DATA EXPLORATION 121 3.1 Multivariate Data and First Measure of Dependence ..........................121 3.1.1 Density Estimation......................................................................123 3.1.2 The Correlation Coefficient........................................................126 3.2 The Multivariate Normal Distribution....................................................128 3.2.1 Important Remark about Independence....................................130 3.2.2 Simulation of Random Samples................................................130 3.2.3 The Bivariate Case......................................................................131 3.2.4 A Simulation Example................................................................132 3.2.5 Let s Have Some Coffee............................................................133 3.2.6 Is the Joint Distribution Normal?..............................................134 3.3 Marginals and More Measures of Dependence....................................135 3.3.1 Estimation of the Coffee Log-Return Distributions................136 3.3.2 More Measures of Dependence..................................................142 3.4 Copulas......................................................................................................144 3.4.1 Definitions and First Properties..................................................145 3.4.2 Examples of Copula Families....................................................146 3.4.3 Copulas and General Bivariate Distributions............................148 3.4.4 Fitting Copulas............................................................................151 3.4.5 Monte Carlo Simulations with Copulas....................................152 3.4.6 A Risk Management Example ..................................................154 3.4.7 A First Example from the Credit Markets................................157 3.4.8 Higher Dimensional Copulas ....................................................158 3.4.9 Multi Name Credit Derivatives and CDOs..............................164 3.5 Principal Component Analysis ..............................................................171 3.5.1 Identification of the Principal Components of a Data Set ... 172 3.5.2 PCA with R..................................................................................175 3.5.3 Effective Dimension of the Space of Yield Curves..................175 3.5.4 Swap Rate Curves ......................................................................178 Appendix 1 : Calculus with Random Vectors and Matrices..........................180 Appendix 2: Families of Copulas....................................................................183 Problems............................................................................................................186 Notes Complements......................................................................................195 Part II REGRESSION 197 4 PARAMETRIC REGRESSION 199 4.1 Simple Linear Regression.................................... 199 4.1.1 Getting the Data..................................... 200 4.1.2 First Plots .......................................... 201 4.1.3 Regression Set-up.................................... 202 4.1.4 Simple Linear Regression............................. 205 4.1.5 Cost Minimizations.................................. 208 4.1.6 Regression as a Minimization Problem.................. 209 4.2 Regression for Prediction Sensitivities....................... 211 4.2.1 Prediction.......................................... 211 4.2.2 Introductory Discussion of Sensitivity and Robustness..... 213 4.2.3 Comparing L2 and LI Regressions ..................... 214 4.2.4 Taking Another Look at the Coffee Data................. 216 4.3 Smoothing Versus Distribution Theory......................... 217 4.3.1 Regression and Conditional Expectation................. 218 4.3.2 Maximum Likelihood Approach........................ 219 4.4 Multiple Regression........................................ 224 4.4.1 Notation............................................ 224 4.4.2 The R Function lm................................... 225 4.4.3 R2 as a Regression Diagnostic......................... 226 4.5 Matrix Formulation and Linear Models........................ 228 4.5.1 Linear Models....................................... 228 4.5.2 Least Squares (Linear) Regression Revisited............. 229 4.5.3 Confidence and Prediction Intervals..................... 235 4.5.4 First Extensions..................................... 236 4.5.5 Testing the CAPM................................... 239 4.6 Polynomial Regression...................................... 243 4.6.1 Polynomial Regression as a Linear Model ............... 243 4.6.2 Example of R Commands............................. 243 4.6.3 Important Remark ................................... 244 4.6.4 Prediction with Polynomial Regression.................. 245 4.6.5 Choice of the Degree p ............................... 248 4.7 Nonlinear Regression....................................... 249 4.7.1 A First Model....................................... 249 4.7.2 Transformation of the Variables........................ 251 4.7.3 A Second Model..................................... 252 4.8 Term Structure of Interest Rates: A Crash Course................ 252 4.8.1 Zero Coupon Bonds.................................. 253 4.8.2 Coupon Bearing Bonds............................... 254 4.8.3 Constructing the Term Structure by Linear Regression? .... 255 4.8.4 Clean Prices Duration.............................. 256 4.8.5 The Three Different Forms of Term Structure............. 257 4.9 Parametric Yield Curve Estimation........................................................258 4.9.1 Estimation Procedures................................................................259 4.9.2 Practical Implementation............................................................260 4.9.3 R Experiments..............................................................................261 4.9.4 Concluding Remarks..................................................................263 Appendix: Cautionary Notes on Some R Idiosyncracies..............................264 Problems...................................................... 268 Notes Complements........................................... 276 5 LOCAL AND NONPARAMETRIC REGRESSION 277 5.1 Review of the Regression Setup .............................. 277 5.2 Basis Expansion Regression.................................. 279 5.2.1 Natural Splines as Local Smoothers..................... 279 5.2.2 Feature Function Expansions.......................... 280 5.3 Nonparametric Scatterplot Smoothers.......................... 283 5.3.1 Smoothing Splines................................... 283 5.3.2 Locally Weighted Regression.......................... 285 5.3.3 A Robust Smoother.................................. 286 5.3.4 The Super Smoother.................................. 287 5.3.5 The Kernel Smoother................................. 287 5.4 More Yield Curve Estimation ................................ 291 5.4.1 A First Estimation Method............................ 291 5.4.2 A Direct Application of Smoothing Splines.............. 292 5.4.3 US and Japanese Instantaneous Forward Rates............ 292 5.5 Multivariate Kernel Regression............................... 293 5.5.1 Running the Kernel in R .............................. 296 5.5.2 An Example Involving the June 1998 S P Futures Contract..................................... 297 5.6 Projection Pursuit Regression ................................ 303 5.6.1 The R Function ppr.................................. 304 5.6.2 ppr Prediction of the S P Afternoon Indicators.......... 306 5.6.3 More on the Comparison of the Two Methods............ 310 5.7 Nonparametric Option Pricing................................ 311 5.7.1 Nonparametric Pricing Alternatives..................... 311 5.7.2 Description of the Data............................... 312 5.7.3 The Actual Experiment............................... 313 5.7.4 Numerical Results................................... 319 Appendix: Kernel Density Estimation Kernel Regression............ 322 Problems...................................................... 324 Notes Complements........................................... 338 Part III TIME SERIES STATE SPACE MODELS 343 6 TIME SERIES MODELS: AR, MA, ARMA, ALL THAT 345 6.1 Notation and First Definitions................................ 345 6.1.1 Notation............................................ 346 6.1.2 Regular Time Series and Signals ....................... 346 6.1.3 Calendar and Irregular Time Series..................... 348 6.1.4 Creating and Plotting timeSeries Objects in R......... 349 6.1.5 High Frequency Data................................. 349 6.1.6 TimeDate Manipulations............................ 353 6.2 Time Dependent Statistics and Stationarity..................... 355 6.2.1 Statistical Moments.................................. 356 6.2.2 The Notion of Stationarity............................. 356 6.2.3 The Search for Stationarity............................ 361 6.2.4 The Example of the CO2 Concentrations................ 363 6.3 First Examples of Models.................................... 367 6.3.1 White Noise ........................................ 367 6.3.2 Random Walk....................................... 371 6.3.3 Auto Regressive Time Series .......................... 372 6.3.4 Moving Average Time Series.......................... 376 6.3.5 Using the Backward Shift Operator B................... 379 6.3.6 Linear Processes..................................... 380 6.3.7 Causality, Stationarity and Invertibility.................. 381 6.3.8 ARMA Time Series.................................. 385 6.3.9 ARIMA Models..................................... 386 6.4 Fitting Models to Data...................................... 386 6.4.1 Practical Steps....................................... 387 6.4.2 R Implementation.................................... 388 6.5 Putting a Price on Temperature............................... 398 6.5.1 Generalities on Degree Days........................... 398 6.5.2 Temperature Options................................. 399 6.5.3 Statistical Analysis of Temperature Historical Data........ 402 Problems...................................................... 415 Notes Complements........................................... 420 7 MULTIVARIATE TIME SERIES, LINEAR SYSTEMS AND KALMAN FILTERING 423 7.1 Multivariate Time Series..........................................................................423 7.1.1 Stationarity and Auto-Covariance Functions............................424 7.1.2 Multivariate White Noise............................................................424 7.1.3 Multivariate AR Models............................................................425 7.1.4 Back to Temperature Options....................................................429 7.1.5 Multivariate MA ARIMA Models........................................432 7.1.6 Cointegration..............................................................................433 7.2 State Space Models: Mathematical Set Up............................................435 7.3 Factor Models as Hidden Markov Processes........................................437 7.3.1 Factor Models..............................................................................437 7.3.2 Assumptions of the Model..........................................................438 7.3.3 Dynamics of the Factors............................................................439 7.4 Kalman Filtering of Linear Systems......................................................439 7.4.1 One-Step-Ahead Prediction..................................................440 7.4.2 Derivation of the Recursive Filtering Equations......................440 7.4.3 Filtering........................................................................................444 7.4.4 More Predictions ........................................................................445 7.4.5 Estimation of the Parameters......................................................447 7.5 Applications to Linear Models................................................................448 7.5.1 State Space Representation of Linear Models..........................448 7.5.2 Linear Models with Time Varying Coefficients ......................449 7.5.3 CAPM with Time Varying ß s ..................................................450 7.6 State Space Representation of Time Series............................................453 7.6.1 The Case of AR Series................................................................453 7.6.2 The General Case of ARMA Series.........................455 7.6.3 Fitting ARMA Models by Maximum Likelihood....................456 7.7 Example: Prediction of Quarterly Earnings..................... 457 Problems...................................................... 461 Notes Complements........................................... 471 8 NONLINEAR TIME SERIES: MODELS AND SIMULATION 473 8.1 First Nonlinear Time Series Models........................... 473 8.1.1 Fractional Time Series................................ 474 8.1.2 Nonlinear Auto-Regressive Series...................... 475 8.1.3 Statistical Estimation................................. 476 8.2 More Nonlinear Models: ARCH, G ARCH All That............ 478 8.2.1 Motivation.......................................... 478 8.2.2 ARCH Models...................................... 479 8.2.3 GARCH Models..................................... 481 8.2.4 Summary........................................... 481 8.2.5 R Commands........................................ 482 8.2.6 Fitting a GARCH Model to Real Data................... 483 8.2.7 Generalizations...................................... 493 8.3 Stochastic Volatility Models.................................. 495 8.3.1 Information Structure................................. 495 8.3.2 State Space Formulation.............................. 496 8.3.3 Excess Kurtosis ..................................... 496 8.3.4 Leverage Effect...................................... 497 8.3.5 Comparison with ARCH and GARCH Models............ 498 8.3.6 The Smile Effect..................................... 499 8.4 Discretization of Stochastic Differential Equations..............................500 8.4.1 Discretization Schemes..............................................................501 8.4.2 Monte Carlo Simulations: A First Example..............................503 8.5 Random Simulation and Scenario Generation......................................505 8.5.1 A Simple Model for the S P 500 Index..................................505 8.5.2 Modeling the Short Interest Rate..............................................508 8.5.3 Modeling the Spread..................................................................509 8.5.4 Putting Everything Together......................................................511 8.6 Filtering of Nonlinear Systems..............................................................513 8.6.1 Hidden Markov Models..............................................................513 8.6.2 General Filtering Approach........................................................514 8.6.3 Particle Filter Approximations..................................................515 8.6.4 Filtering in Finance? Statistical Issues......................................519 8.6.5 Application: Tracking Volatility................................................520 Problems............................................................................................................526 Notes Complements......................................................................................531 Part IV BACKGROUND MATERIAL 535 9 APPENDICES 537 9.1 Appendix A: A Quick Introduction to R................................................537 9.1.1 Starting R Under Mac OS, Windows and Under UNIX.... 537 9.1.2 Creating R Objects......................................................................538 9.1.3 Random Generation and White Noise......................................540 9.1.4 More Functions and for Loops................................................542 9.1.5 Importing Data............................................................................544 9.1.6 Programming in R: A First Function........................................549 9.2 Appendix B: A Crash Course on Black-Scholes Option Pricing .... 551 9.2.1 Generalities on Option Pricing..................................................551 Notes Complements......................................................................................558 References 559 Notation Index 565 Data Set Index 569 R Index 571 Author Index 575 Subject Index 579
any_adam_object 1
author Carmona, René 1947-
author_GND (DE-588)122405668
author_facet Carmona, René 1947-
author_role aut
author_sort Carmona, René 1947-
author_variant r c rc
building Verbundindex
bvnumber BV041352122
callnumber-first H - Social Science
callnumber-label HG106
callnumber-raw HG106
callnumber-search HG106
callnumber-sort HG 3106
callnumber-subject HG - Finance
classification_rvk QP 890
SK 840
SK 850
classification_tum DAT 368f
WIR 522f
WIR 651f
MAT 620f
ctrlnum (OCoLC)871570133
(DE-599)BVBBV041352122
dewey-full 332/.01/51955
dewey-hundreds 300 - Social sciences
dewey-ones 332 - Financial economics
dewey-raw 332/.01/51955
dewey-search 332/.01/51955
dewey-sort 3332 11 551955
dewey-tens 330 - Economics
discipline Informatik
Mathematik
Wirtschaftswissenschaften
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02502nam a2200661 c 4500</leader><controlfield tag="001">BV041352122</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201015 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">131010s2014 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461487876</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-4614-8787-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781493938353</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-4939-3835-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461487876</subfield><subfield code="c">ebk</subfield><subfield code="9">978-1-4614-8787-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)871570133</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041352122</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-521</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HG106</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">332/.01/51955</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 890</subfield><subfield code="0">(DE-625)141965:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 368f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 522f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 651f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 620f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Carmona, René</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122405668</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical analysis of financial data in R</subfield><subfield code="c">René A. Carmona</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 588 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer texts in statistics</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">S-Plus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finances - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finances - Modèles économétriques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finanças (modelos matemáticos)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matemática financeira</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Portfolio-analyse</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">S-Plus</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistische analyse</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wiskundige modellen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ökonometrisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finance</subfield><subfield code="x">Econometric models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finance</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">S-PLUS</subfield><subfield code="0">(DE-588)4321162-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wirtschaftsmathematik</subfield><subfield code="0">(DE-588)4066472-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wirtschaftsmathematik</subfield><subfield code="0">(DE-588)4066472-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">S-PLUS</subfield><subfield code="0">(DE-588)4321162-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4614-8788-3</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">1. Auflage</subfield><subfield code="a">Carmona, René</subfield><subfield code="t">Statistical analysis of financial data in S-PLUS</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026800675&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026800675</subfield></datafield></record></collection>
id DE-604.BV041352122
illustrated Illustrated
indexdate 2024-08-01T10:46:19Z
institution BVB
isbn 9781461487876
9781493938353
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-026800675
oclc_num 871570133
open_access_boolean
owner DE-521
DE-11
DE-861
DE-523
DE-863
DE-BY-FWS
DE-703
owner_facet DE-521
DE-11
DE-861
DE-523
DE-863
DE-BY-FWS
DE-703
physical xvii, 588 S. graph. Darst.
publishDate 2014
publishDateSearch 2014
publishDateSort 2014
publisher Springer
record_format marc
series2 Springer texts in statistics
spellingShingle Carmona, René 1947-
Statistical analysis of financial data in R
S-Plus
Finances - Modèles mathématiques
Finances - Modèles économétriques
Finanças (modelos matemáticos) larpcal
Matemática financeira larpcal
Portfolio-analyse gtt
S-Plus gtt
Statistische analyse gtt
Wiskundige modellen gtt
Mathematisches Modell
Ökonometrisches Modell
Finance Econometric models
Finance Mathematical models
S-PLUS (DE-588)4321162-8 gnd
Wirtschaftsmathematik (DE-588)4066472-7 gnd
subject_GND (DE-588)4321162-8
(DE-588)4066472-7
title Statistical analysis of financial data in R
title_auth Statistical analysis of financial data in R
title_exact_search Statistical analysis of financial data in R
title_full Statistical analysis of financial data in R René A. Carmona
title_fullStr Statistical analysis of financial data in R René A. Carmona
title_full_unstemmed Statistical analysis of financial data in R René A. Carmona
title_old Carmona, René Statistical analysis of financial data in S-PLUS
title_short Statistical analysis of financial data in R
title_sort statistical analysis of financial data in r
topic S-Plus
Finances - Modèles mathématiques
Finances - Modèles économétriques
Finanças (modelos matemáticos) larpcal
Matemática financeira larpcal
Portfolio-analyse gtt
S-Plus gtt
Statistische analyse gtt
Wiskundige modellen gtt
Mathematisches Modell
Ökonometrisches Modell
Finance Econometric models
Finance Mathematical models
S-PLUS (DE-588)4321162-8 gnd
Wirtschaftsmathematik (DE-588)4066472-7 gnd
topic_facet S-Plus
Finances - Modèles mathématiques
Finances - Modèles économétriques
Finanças (modelos matemáticos)
Matemática financeira
Portfolio-analyse
Statistische analyse
Wiskundige modellen
Mathematisches Modell
Ökonometrisches Modell
Finance Econometric models
Finance Mathematical models
S-PLUS
Wirtschaftsmathematik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026800675&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT carmonarene statisticalanalysisoffinancialdatainr