Basic algebraic geometry 2 Schemes and complex manifolds

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Šafarevič, Igorʹ R. 1923-2017 (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin [u.a.] Springer 2013
Ausgabe:3. ed.
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cc4500
001 BV041270382
003 DE-604
005 20220411
007 t|
008 130913s2013 xx ad|| |||| 00||| eng d
020 |a 9783642380099  |q Hardcover  |9 978-3-642-38009-9 
020 |a 9783662514016  |q Softcover  |9 978-3-662-51401-6 
035 |a (OCoLC)935012533 
035 |a (DE-599)BVBBV041270382 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-11  |a DE-188  |a DE-29T  |a DE-19  |a DE-824  |a DE-83  |a DE-91G 
084 |a SK 240  |0 (DE-625)143226:  |2 rvk 
100 1 |a Šafarevič, Igorʹ R.  |d 1923-2017  |e Verfasser  |0 (DE-588)119280337  |4 aut 
240 1 0 |a Osnovj algebraičeskoj geometrii 
245 1 0 |a Basic algebraic geometry  |n 2  |p Schemes and complex manifolds  |c Igor R. Shafarevich 
250 |a 3. ed. 
264 1 |a Berlin [u.a.]  |b Springer  |c 2013 
300 |a XIV, 262 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
773 0 8 |w (DE-604)BV009785411  |g 2 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-642-38010-5 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026244005&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-026244005 

Datensatz im Suchindex

DE-19_call_number 1601/SK 240 S128 B31-2(3)+2
1601/SK 240 S128 B31-2(3)
DE-19_location 95
DE-BY-TUM_call_number 0102 MAT 140 2001 A 29535
DE-BY-TUM_katkey 2623231
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040009673769
DE-BY-UBM_katkey 4948094
DE-BY-UBM_media_number 41623350120016
41623350130018
_version_ 1823055417343737856
adam_text Titel: Bd. 2. Basic algebraic geometry. Schemes and complex manifolds Autor: Šafarevič, Igorʹ R Jahr: 2013 Contents Book 2: Schemes and Varieties 5 Schemes 3 1 The Spec of a Ring 5 1.1 Definition of Spec A 5 1.2 Properties of Points of Spec A 7 1.3 The Zariski Topology of Spec A 9 1.4 Irreducibility, Dimension 11 1.5 Exercises to Section 1 14 2 Sheaves 15 2.1 Presheaves 15 2.2 The Structure Presheaf 17 2.3 Sheaves 19 2.4 Stalks of a Sheaf 23 2.5 Exercises to Section 2 24 3 Schemes 25 3.1 Definition of a Scheme 25 3.2 Glueing Schemes 30 3.3 Closed Subschemes 32 3.4 Reduced Schemes and Nilpotents 35 3.5 Finiteness Conditions 36 3.6 Exercises to Section 3 38 4 Products of Schemes 40 4.1 Definition of Product 40 4.2 Group Schemes 42 4.3 Separatedness 43 4.4 Exercises to Section 4 46 6 Varieties 49 1 Definitions and Examples 49 1.1 Definitions 49 VII http://d-nb.info/1033092460 VIII Contents 1.2 Vector Bundles 53 1.3 Vector Bundles and Sheaves 56 1.4 Divisors and Line Bundles 63 1.5 Exercises to Section 1 67 2 Abstract and Quasiprojective Varieties 68 2.1 Chow s Lemma 68 2.2 Blowup Along a Subvariety 70 2.3 Example of Non-quasiprojective Variety 74 2.4 Criterions for Projectivity 79 2.5 Exercises to Section 2 81 3 Coherent Sheaves 81 3.1 Sheaves of Ox-Modules 81 3.2 Coherent Sheaves 85 3.3 Devissage of Coherent Sheaves 88 3.4 The Finiteness Theorem 92 3.5 Exercises to Section 3 93 4 Classification of Geometric Objects and Universal Schemes .... 94 4.1 Schemes and Functors 94 4.2 The Hilbert Polynomial 100 4.3 Flat Families 103 4.4 The Hilbert Scheme 107 4.5 Exercises to Section 4 110 Book 3: Complex Algebraic Varieties and Complex Manifolds 7 The Topology of Algebraic Varieties 115 1 The Complex Topology 115 1.1 Definitions 115 1.2 Algebraic Varieties as Differentiable Manifolds; Orientation 117 1.3 Homology of Nonsingular Projective Varieties 118 1.4 Exercises to Section 1 121 2 Connectedness 121 2.1 Preliminary Lemmas 121 2.2 The First Proof of the Main Theorem 122 2.3 The Second Proof 124 2.4 Analytic Lemmas 126 2.5 Connectedness of Fibres 127 2.6 Exercises to Section 2 128 3 The Topology of Algebraic Curves 129 3.1 Local Structure of Morphisms 129 3.2 Triangulation of Curves 131 3.3 Topological Classification of Curves 133 3.4 Combinatorial Classification of Surfaces 137 3.5 The Topology of Singularities of Plane Curves 140 3.6 Exercises to Section 3 142 Contents IX 4 Real Algebraic Curves 142 4.1 Complex Conjugation 143 4.2 Proof of Harnack s Theorem 144 4.3 Ovals of Real Curves 146 4.4 Exercises to Section 4 147 8 Complex Manifolds 149 1 Definitions and Examples 149 1.1 Definition 149 1.2 Quotient Spaces 152 1.3 Commutative Algebraic Groups as Quotient Spaces .... 155 1.4 Examples of Compact Complex Manifolds not Isomorphic to Algebraic Varieties 157 1.5 Complex Spaces 163 1.6 Exercises to Section 1 165 2 Divisors and Meromorphic Functions 166 2.1 Divisors 166 2.2 Meromorphic Functions 169 2.3 The Structure of the Field A4(X) 171 2.4 Exercises to Section 2 174 3 Algebraic Varieties and Complex Manifolds 175 3.1 Comparison Theorems 175 3.2 Example of Nonisomorphic Algebraic Varieties that Are Isomorphic as Complex Manifolds 178 3.3 Example of a Nonalgebraic Compact Complex Manifold with Maximal Number of Independent Meromorphic Functions 181 3.4 The Classification of Compact Complex Surfaces 183 3.5 Exercises to Section 3 185 4 Kahler Manifolds 185 4.1 Kahler Metric 186 4.2 Examples 188 4.3 Other Characterisations of Kahler Metrics 190 4.4 Applications of Kahler Metrics 193 4.5 Hodge Theory 196 4.6 Exercises to Section 4 198 9 Uniformisation 201 1 The Universal Cover 201 1.1 The Universal Cover of a Complex Manifold 201 1.2 Universal Covers of Algebraic Curves 203 1.3 Projective Embedding of Quotient Spaces 205 1.4 Exercises to Section 1 206 2 Curves of Parabolic Type 207 2.1 Theta Functions 207 2.2 Projective Embedding 209 X Contents 2.3 Elliptic Functions, Elliptic Curves and Elliptic Integrals . . 210 2.4 Exercises to Section 2 213 3 Curves of Hyperbolic Type 213 3.1 Poincare Series 213 3.2 Projective Embedding 216 3.3 Algebraic Curves and Automorphic Functions 218 3.4 Exercises to Section 3 221 4 Uniformising Higher Dimensional Varieties 221 4.1 Complete Intersections are Simply Connected 221 4.2 Example of Manifold with tt a Given Finite Group .... 222 4.3 Remarks 226 4.4 Exercises to Section 4 227 Historical Sketch 229 1 Elliptic Integrals 229 2 Elliptic Functions 231 3 Abelian Integrals 233 4 Riemann Surfaces 235 5 The Inversion of Abelian Integrals 237 6 The Geometry of Algebraic Curves 239 7 Higher Dimensional Geometry 241 8 The Analytic Theory of Complex Manifolds 243 9 Algebraic Varieties over Arbitrary Fields and Schemes 244 References 247 References for the Historical Sketch 250 Index 253
any_adam_object 1
author Šafarevič, Igorʹ R. 1923-2017
author_GND (DE-588)119280337
author_facet Šafarevič, Igorʹ R. 1923-2017
author_role aut
author_sort Šafarevič, Igorʹ R. 1923-2017
author_variant i r š ir irš
building Verbundindex
bvnumber BV041270382
classification_rvk SK 240
ctrlnum (OCoLC)935012533
(DE-599)BVBBV041270382
discipline Mathematik
edition 3. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01373nam a2200337 cc4500</leader><controlfield tag="001">BV041270382</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220411 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">130913s2013 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642380099</subfield><subfield code="q">Hardcover</subfield><subfield code="9">978-3-642-38009-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662514016</subfield><subfield code="q">Softcover</subfield><subfield code="9">978-3-662-51401-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)935012533</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041270382</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Šafarevič, Igorʹ R.</subfield><subfield code="d">1923-2017</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119280337</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Osnovj algebraičeskoj geometrii</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Basic algebraic geometry</subfield><subfield code="n">2</subfield><subfield code="p">Schemes and complex manifolds</subfield><subfield code="c">Igor R. Shafarevich</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 262 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV009785411</subfield><subfield code="g">2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-38010-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026244005&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026244005</subfield></datafield></record></collection>
id DE-604.BV041270382
illustrated Illustrated
indexdate 2025-02-03T17:41:49Z
institution BVB
isbn 9783642380099
9783662514016
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-026244005
oclc_num 935012533
open_access_boolean
owner DE-11
DE-188
DE-29T
DE-19
DE-BY-UBM
DE-824
DE-83
DE-91G
DE-BY-TUM
owner_facet DE-11
DE-188
DE-29T
DE-19
DE-BY-UBM
DE-824
DE-83
DE-91G
DE-BY-TUM
physical XIV, 262 S. Ill., graph. Darst.
publishDate 2013
publishDateSearch 2013
publishDateSort 2013
publisher Springer
record_format marc
spellingShingle Šafarevič, Igorʹ R. 1923-2017
Basic algebraic geometry
title Basic algebraic geometry
title_alt Osnovj algebraičeskoj geometrii
title_auth Basic algebraic geometry
title_exact_search Basic algebraic geometry
title_full Basic algebraic geometry 2 Schemes and complex manifolds Igor R. Shafarevich
title_fullStr Basic algebraic geometry 2 Schemes and complex manifolds Igor R. Shafarevich
title_full_unstemmed Basic algebraic geometry 2 Schemes and complex manifolds Igor R. Shafarevich
title_short Basic algebraic geometry
title_sort basic algebraic geometry schemes and complex manifolds
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026244005&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV009785411
work_keys_str_mv AT safarevicigorʹr osnovjalgebraiceskojgeometrii
AT safarevicigorʹr basicalgebraicgeometry2