Introduction to mathematical portfolio theory

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Joshi, Mark S. 1969- (VerfasserIn), Paterson, Jane M. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge [u.a.] Cambridge Univ. Press 2013
Ausgabe:1. publ.
Schriftenreihe:International series on actuarial science
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV041241570
003 DE-604
005 20140616
007 t
008 130827s2013 d||| |||| 00||| eng d
020 |a 9781107042315  |9 978-1-107-04231-5 
035 |a (OCoLC)859380106 
035 |a (DE-599)HBZHT017648998 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-1047  |a DE-945  |a DE-19  |a DE-11  |a DE-20 
084 |a QK 810  |0 (DE-625)141682:  |2 rvk 
084 |a SK 980  |0 (DE-625)143277:  |2 rvk 
100 1 |a Joshi, Mark S.  |d 1969-  |e Verfasser  |0 (DE-588)12898693X  |4 aut 
245 1 0 |a Introduction to mathematical portfolio theory  |c Mark S. Joshi ; Jane M. Paterson 
250 |a 1. publ. 
264 1 |a Cambridge [u.a.]  |b Cambridge Univ. Press  |c 2013 
300 |a XII, 314 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a International series on actuarial science 
650 0 7 |a Portfoliomanagement  |0 (DE-588)4115601-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Finanzmathematik  |0 (DE-588)4017195-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Portfoliomanagement  |0 (DE-588)4115601-8  |D s 
689 0 1 |a Finanzmathematik  |0 (DE-588)4017195-4  |D s 
689 0 |C b  |5 DE-604 
700 1 |a Paterson, Jane M.  |e Verfasser  |0 (DE-588)1043521011  |4 aut 
856 4 2 |m SWB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026215762&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-026215762 

Datensatz im Suchindex

_version_ 1804150692874551297
adam_text CONTENTS PREFACE PAGE XI 1 1 2 3 5 9 9 10 12 12 13 15 20 21 21 24 24 26 29 30 34 36 36 FINDING THE EFFICIENT FRONTIER - THE MULTI-ASSET CASE 39 4.1 FINDING THE TANGENT PORTFOLIO 39 4.2 GEOMETRY OF THE FRONTIER 40 DEFINITIONS OF RISK AND RETURN 1.1 1.2 1.3 1.4 1.5 1.6 1.7 INTRODUCTION MEASURING RETURN PORTFOLIO CONSTRAINTS DEFINING RISK WITH VARIANCE OTHER RISK MEASURES REVIEW PROBLEMS EFFICIENT PORTFOLIOS: THE TWO-ASSET CASE 2.1 2.2 2.3 2.4 DEFINING EFFICIENCY TWO-ASSET PORTFOLIOS 2.2.1 THE EFFECT OF CORRELATION 2.2.2 CLASSIFYING THE CURVES REVIEW PROBLEMS PORTFOLIOS WITH A RISK-FREE ASSET 3.1 3.2 3.3 3.4 3.5 3.6 3.7 THE RISK-FREE ASSET EFFICIENCY WITH A RISK-FREE ASSET TANGENT PORTFOLIOS EXAMPLES BORROWING RESTRICTIONS REVIEW PROBLEMS VI CONTENTS 4.3 THE MINIMAL VARIANCE PORTFOLIO 42 4.4 ILLUSTRATING THE METHOD 43 4.5 THE DERIVATION OF THE ALGORITHM 44 4.6 SOLUTION VIA LAGRANGE MULTIPLIERS 52 4.7 REVIEW 53 4.8 PROBLEMS 54 5 SINGLE-FACTOR MODELS 57 5.1 INTRODUCTION 57 5.2 MATHEMATICAL FORMULATION OF THE SINGLE-FACTOR MODEL 58 5.3 DATA REQUIREMENTS FOR THE SINGLE-FACTOR MODEL 59 5.4 UNDERSTANDING BETA 60 5.5 TECHNIQUES FOR PARAMETER ESTIMATION 62 5.6 ASSESSING ESTIMATES 64 5.7 PORTFOLIO BETAS 67 5.8 BLUME S TECHNIQUE 67 5.9 FUNDAMENTAL ANALYSIS 70 5.10 REVIEW 71 5.11 PROBLEMS 72 6 MULTI-FACTOR MODELS 75 6.1 MATHEMATICAL FORMULATION 75 6.2 TYPES OF MULTI-FACTOR MODELS 78 . 6.3 ORTHOGONALISATION FOR MULTI-FACTOR MODELS 79 6.4 REVIEW 84 6.5 PROBLEMS 84 7 INTRODUCING UTILITY 88 7.1 LIMITATIONS OF MEAN-VARIANCE ANALYSIS 88 7.2 DEFINING UTILITY 90 7.3 PROPERTIES OF UTILITY FUNCTIONS 91 7.4 QUADRATIC UTILITY AND PORTFOLIO THEORY 93 7.5 INDIFFERENCE CURVES 94 7.6 APPROXIMATING WITH QUADRATIC UTILITY 95 7.7 INDIFFERENCE PRICING 96 7.8 REVIEW . - 98 7.9 PROBLEMS 98 8 UTILITY AND RISK AVERSION 102 8.1 RISK AVERSION AND CURVATURE 102 8.2 ABSOLUTE RISK AVERSION 103 8.3 RELATIVE RISK AVERSION 105 8.4 VARYING THE UTILITY FUNCTION 107 CONTENTS VII 8.5 ST PETERSBURG REVISITED 109 8.6 REVIEW 110 8.7 PROBLEMS 110 9 FOUNDATIONS OF UTILITY THEORY 113 9.1 ANALYSING UTILITY THEORY THROUGH EXPERIMENTAL ECONOMICS 113 9.2 THE RATIONAL INVESTOR 115 9.3 THE RATIONAL EXPECTATIONS THEOREM 117 9.4 REVIEW 121 9.5 PROBLEMS 121 10 MAXIMISING LONG-TERM GROWTH 122 10.1 GEOMETRIC MEANS 122 10.2 KELLY S THEOREM 125 10.3 REVIEW . 130 10.4 PROBLEMS 130 11 STOCHASTIC DOMINANCE 133 11.1 INTRODUCTION 133 133 134 138 145 145 12 RISK MEASURES 148 148 149 152 154 154 158 160 162 165 165 166 167 168 13 THE CAPITAL ASSET PRICING MODEL 169 169 169 11.2 11.3 11.4 11.5 11.6 DOMINANCE FIRST-ORDER STOCHASTIC DOMINANCE SECOND-ORDER STOCHASTIC DOMINANCE REVIEW PROBLEMS RISK MEASURES 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 INTRODUCTION VALUE-AT-RISK COMPUTING VAR VAR ESTIMATES AND EXCESSES EVALUATING RISK MEASURES OTHER RISK MEASURES AND THE AXIOMS CONDITIONAL EXPECTED SHORTFALL CES AND THE COHERENCE AXIOMS RISK MEASURES AND UTILITY ECONOMIC CAPITAL MODELLING REVIEW PROBLEMS ADDITIONAL PROBLEMS THE CAPITAL ASSET PRICING MODEL 13.1 13.2 INTRODUCTION FROM TANGENT TO MARKET VIII CONTENTS 14 15 13.3 ASSESSING THE CAPM ASSUMPTIONS 13.4 USING CAPM 13.5 IMPLEMENTING CAPM 13.6 ELIMINATING THE RISK-FREE ASSET 13.7 TESTING CAPM 13.8 ROLL S OBJECTION 13.9 REVIEW 13.10 PROBLEMS THE ARBITRAGE PRICING MODEL 14.1 INTRODUCTION 14.2 DEFINING ARBITRAGE 14.3 THE ONE-STEP BINOMIAL TREE 14.4 THE PRINCIPLE OF NO ARBITRAGE 14.5 USING REPLICATION TO PRICE A CALL OPTION 14.6 RISK-NEUTRALITY 14.7 INTEREST RATES AND DISCOUNTING 14.8 THE TRINOMIAL TREE AND LIMITATIONS OF NO ARBITRAGE 14.9 ARBITRAGE AND RANDOMNESS 14.10 ARBITRAGE PRICING THEORY 14.11 COMPUTATIONS 14.12 AN ALTERNATIVE APPROACH TO COMPUTATION 14.13 INTRODUCING REALISM 14.14 APT VERSUS CAPM 14.15 APT IN PRACTICE 14.16 APPLICATIONS OF APT 14.17 CRITICISING APT 14.18 REVIEW 14.19 PROBLEMS MARKET EFFICIENCY AND RATIONALITY 15.1 INTRODUCTION 15.2 DEFINING EFFICIENCY 15.3 TESTING EFFICIENCY 15.4 ANOMALIES 15.5 CONCLUSIONS ON EFFICIENCY 15.6 RATIONALITY 15.7 FAMOUS BUBBLES 15.8 JUSTIFYING HIGH STOCK PRICES 15.9 FURTHER READING 15.10 REVIEW 173 173 173 174 176 178 179 180 182 182 182 183 184 184 185 186 188 189 190 192 196 197 197 198 199 199 200 200 203 203 203 206 207 209 210 211 213 213 213 CONTENTS IX 15.11 QUESTIONS 214 16 BROWNIAN MOTION AND STOCK PRICE MODELS ACROSS TIME 215 16.1 INTRODUCTION 215 16.2 BROWNIAN MOTION 215 16.3 DIFFERENTIABILITY PROPERTIES OF BROWNIAN MOTION 216 16.4 COMPUTING WITH BROWNIAN MOTION 219 16.5 MORE PROPERTIES 220 16.6 ARITHMETIC AND GEOMETRIC BROWNIAN MOTIONS 222 16.7 LOG-NORMAL MODELS FOR STOCK PRICES 224 16.8 AUTO-REGRESSIVE PROCESSES 226 16.9 THE WILKIE MODEL 227 16.10 USING THE WILKIE MODEL 230 16.11 REVIEW 231 16.12 QUESTIONS 232 APPENDIX A MATRIX ALGEBRA 234 APPENDIX B SOLUTIONS 238 REFERENCES 309 INDEX 311
any_adam_object 1
author Joshi, Mark S. 1969-
Paterson, Jane M.
author_GND (DE-588)12898693X
(DE-588)1043521011
author_facet Joshi, Mark S. 1969-
Paterson, Jane M.
author_role aut
aut
author_sort Joshi, Mark S. 1969-
author_variant m s j ms msj
j m p jm jmp
building Verbundindex
bvnumber BV041241570
classification_rvk QK 810
SK 980
ctrlnum (OCoLC)859380106
(DE-599)HBZHT017648998
discipline Mathematik
Wirtschaftswissenschaften
edition 1. publ.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01576nam a2200385 c 4500</leader><controlfield tag="001">BV041241570</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140616 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130827s2013 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107042315</subfield><subfield code="9">978-1-107-04231-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859380106</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT017648998</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1047</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QK 810</subfield><subfield code="0">(DE-625)141682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 980</subfield><subfield code="0">(DE-625)143277:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Joshi, Mark S.</subfield><subfield code="d">1969-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12898693X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to mathematical portfolio theory</subfield><subfield code="c">Mark S. Joshi ; Jane M. Paterson</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 314 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">International series on actuarial science</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Portfoliomanagement</subfield><subfield code="0">(DE-588)4115601-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Portfoliomanagement</subfield><subfield code="0">(DE-588)4115601-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paterson, Jane M.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1043521011</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026215762&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026215762</subfield></datafield></record></collection>
id DE-604.BV041241570
illustrated Illustrated
indexdate 2024-07-10T00:42:57Z
institution BVB
isbn 9781107042315
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-026215762
oclc_num 859380106
open_access_boolean
owner DE-1047
DE-945
DE-19
DE-BY-UBM
DE-11
DE-20
owner_facet DE-1047
DE-945
DE-19
DE-BY-UBM
DE-11
DE-20
physical XII, 314 S. graph. Darst.
publishDate 2013
publishDateSearch 2013
publishDateSort 2013
publisher Cambridge Univ. Press
record_format marc
series2 International series on actuarial science
spelling Joshi, Mark S. 1969- Verfasser (DE-588)12898693X aut
Introduction to mathematical portfolio theory Mark S. Joshi ; Jane M. Paterson
1. publ.
Cambridge [u.a.] Cambridge Univ. Press 2013
XII, 314 S. graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
International series on actuarial science
Portfoliomanagement (DE-588)4115601-8 gnd rswk-swf
Finanzmathematik (DE-588)4017195-4 gnd rswk-swf
Portfoliomanagement (DE-588)4115601-8 s
Finanzmathematik (DE-588)4017195-4 s
b DE-604
Paterson, Jane M. Verfasser (DE-588)1043521011 aut
SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026215762&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Joshi, Mark S. 1969-
Paterson, Jane M.
Introduction to mathematical portfolio theory
Portfoliomanagement (DE-588)4115601-8 gnd
Finanzmathematik (DE-588)4017195-4 gnd
subject_GND (DE-588)4115601-8
(DE-588)4017195-4
title Introduction to mathematical portfolio theory
title_auth Introduction to mathematical portfolio theory
title_exact_search Introduction to mathematical portfolio theory
title_full Introduction to mathematical portfolio theory Mark S. Joshi ; Jane M. Paterson
title_fullStr Introduction to mathematical portfolio theory Mark S. Joshi ; Jane M. Paterson
title_full_unstemmed Introduction to mathematical portfolio theory Mark S. Joshi ; Jane M. Paterson
title_short Introduction to mathematical portfolio theory
title_sort introduction to mathematical portfolio theory
topic Portfoliomanagement (DE-588)4115601-8 gnd
Finanzmathematik (DE-588)4017195-4 gnd
topic_facet Portfoliomanagement
Finanzmathematik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026215762&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT joshimarks introductiontomathematicalportfoliotheory
AT patersonjanem introductiontomathematicalportfoliotheory