Principles of proteomics

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Twyman, Richard M. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York, NY [u.a.] Garland Science 2014
Ausgabe:2. ed.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV041218618
003 DE-604
005 20140428
007 t
008 130814s2014 xxkad|| |||| 00||| eng d
010 |a 2013021694 
020 |a 9780815344728  |c alk. paper  |9 978-0-8153-4472-8 
035 |a (OCoLC)862984490 
035 |a (DE-599)BVBBV041218618 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxk  |c GB 
049 |a DE-703  |a DE-355  |a DE-29T  |a DE-19 
050 0 |a QP551 
082 0 |a 572/.6 
084 |a WC 4170  |0 (DE-625)148093:  |2 rvk 
084 |a WD 5100  |0 (DE-625)148194:  |2 rvk 
100 1 |a Twyman, Richard M.  |e Verfasser  |4 aut 
245 1 0 |a Principles of proteomics  |c Richard M. Twyman 
250 |a 2. ed. 
264 1 |a New York, NY [u.a.]  |b Garland Science  |c 2014 
300 |a XI, 260 S., [4] Bl.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 4 |a Proteomics 
650 4 |a Proteins 
650 0 7 |a Proteom  |0 (DE-588)4576155-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Proteomanalyse  |0 (DE-588)4596545-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Proteom  |0 (DE-588)4576155-3  |D s 
689 0 1 |a Proteomanalyse  |0 (DE-588)4596545-6  |D s 
689 0 |5 DE-604 
856 4 2 |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026193229&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-026193229 

Datensatz im Suchindex

_version_ 1804150654542807040
adam_text VIII Contents Chapter 1 The origin and scope of proteomics 1 1.1 INTRODUCTION 1 1.2 THE BIRTH OF LARGE-SCALE BIOLOGY ANDTHE-OMICS-ERA 1 1.3 THE GENOME, TRANSCRIPTOME, PROTEOME, AND METABOLOME 6 1.4 FUNCTIONAL GENOMICS 8 Transcriptomics is the systematic, global analysis of m RNA 8 Large-scale mutagenesis and interference can also determine the functions of genes on a global scale 11 1.5 THE NEED FOR PROTEOMICS 15 1.6 THE SCOPE OF PROTEOMICS 17 Protein identification and quantitation are the most fundamental aspects of proteomic analysis 17 Important functional data can be gained from sequence and structural analysis 18 Interaction proteomics and activity-based proteomics can help to link proteins into functional networks 19 1.7 CURRENT CHALLENGES IN PROTEOMICS 20 Chapter 2 Strategies for protein separation 23 2.1 INTRODUCTION 23 2.2 GENERAL PRINCIPLES OF PROTEIN SEPARATION IN PROTEOMICS 23 2.3 PRINCIPLES OF TWO-DIMENSIONAL GEL ELECTROPHORESIS 25 Electrophoresis separates proteins by mass and charge 25 Isoelectric focusing separates proteins by charge irrespective of mass 26 SDS-PAGE separates proteins by mass irrespective of charge 28 2.4 THE APPLICATION OF 2DGE IN PROTEOMICS 29 The four major advantages of 2DGE are robustness, reproducibility, visualization, and compatibility with downstream microanalysis 29 The four major limitations of 2DGE are resolution, sensitivity, representation, and compatibility with automated protein analysis 30 The resolution of 2DGE can be improved with giant gels, zoom gels, and modified gradients, or by pre-ffactiofiating the sample 30 . The sensitivity of 2DGE depends on the visualization of minor protein sppts, which ľ can be masked by abundant proteins 31 Ttiè repłe&ntatioiri of hydrophobic proteins is ľi -.-. an intractable probte m reflecting the buffelt o«« t required for isoelectric focusing 32 Downstream mass spectrometry requires Spot analysis and picking 34 2.5 PRINCIPLES OF MULTIDIMENSIONAL UQUID CHROMATOGRAPHY 34 Protein and peptide separation by chromatography relies on differing affinity for stationary and mobile phases 34 Affinity chromatography exploits the specific binding characteristics of proteins and/or peptides 36 Size exclusion chromatography sieves molecules on the basis of their size 36 Ion exchange chromatography exploits differences in net charge 37 Reversed-phase chromatography and hydrophobic interaction chromatography exploit the affinity between peptides and hydrophobic resins 38 2.6 MULTIDIMENSIONAL UQUID CHROMATOGRAPHY STRATEGIES IN PROTEOMICS 39 Multidimensional liquid chromatography is more versatile and more easily automated than 2DGE but lacks a visual dimension 39 The most useful MDLC systems achieve optimal peak capacity by exploiting orthogonal separations that have internally compatible buffers 40 MudPIT shows how MDLC has evolved from a laborious technique to virtually hands-free operation 41 RP-RPLC and HILIC-RP systems offer advantages for the separation of certain types of peptide mixtures 44 Affinity chromatography is combined with MDLC to achieve the simplification of peptide mixtures 44 CONTENTS ¡x Chapter 3 Strategies for protein identification 3.1 INTRODUCTION 3.2 PROTEIN IDENTIFICATION WITH ANTIBODIES 3.3 DETERMINATION OF PROTEIN SEQUENCES BY CHEMICAL DEGRADATION Complete hydrolysis allows protein sequences to be inferred from the content of the resulting amino acid pool Edman degradation was the first general method for the de novo sequencing of proteins Edman degradation was the first protein identification method to be applied in . prateomics, but it is difficult to apply on a large scale 3.4 MASS SPECTROMETRY—BASIC PRINCIPLES AND INSTRUMENTATION Mass spectrometry is based on the separation of molecules according to their mass/charge ratio The integration of mass spectrometry into proteomics required the development of soft ionization methods to prevent random fragmentation Controlled fragmentation is used to break peptide bonds and generate fragment ions Five principal types of mass analyzer are commonly used in proteomics 3.5 PROTEIN IDENTIFICATION USING DATA FROM MASS SPECTRA Peptide mass fingerprinting correlates e xperimental and theoretical intact peptide masses Shotgun proteomics can be combined with database searches based on uninterpreted spectra MS/MS spectra can be used to derive protein sequences de novo Chapter 4 Strategies for protein quantitation 4.1 INTRODUCTION 4.2 QUANTITATIVE PROTEOMICS BASED ON 2DGE The quantitation of proteins in two-dimensional gels involves the creation of digital data from analog images Spot detection, quantitation, and comparison can be challenging without human intervention 47 47 47 48 48 49 50 52 52 52 53 54 58 58 61 61 69 69 70 70 71 4.3 MULTIPLEXED IN-GEL PROTEOMICS 75 Difference in-gel electrophoresis involves the simultaneous separation of comparative protein samples labeled with different fluorophores 75 Parallel analysis with multiple dyes can also be used to identify particular structural or functional groups of proteins 76 4.4 QUANTITATIVE MASS SPECTROMETRY 77 Label-free quantitation may be based on spectral counting or the comparison of signal intensities across samples in a narrow m/z range 77 Label-based quantitation involves the incorporation of labels that allow corresponding peptides in different samples to be identified by a specific change in mass 77 ICAT reagents are used for the selective labeling of proteins or peptides 79 Proteins and peptides can also be labeled nonselectively 80 Isobaric tagging allows protein quantitation by the detection of reporter ions 80 Metabolic labeling introduces the label before sample preparation but is limited to simple organisms and cultured cells 83 Chapter 5 The analysis of protein sequences 87 5.1 INTRODUCTION 87 5.2 PROTEIN FAMILIES AND EVOLUTIONARY RELATIONSHIPS 89 Evolutionary relationships between proteins are based on homology 89 The function of a protein can often be predicted from its sequence 92 5.3 PRINCIPLES OF PROTEIN SEQUENCE COMPARISON 93 Protein sequences can be compared in terms of identity and similarity 93 Homologous sequences are found by pairwise similarity searching 93 Substitution score matrices rank the importance of different substitutions 96 Sequence alignment scores depend on sequence length 98 Multiple alignments provide more information about key sequence elements 98 5.4 STRATEGIES TO FIND MORE DISTANT RELATIONSHIPS 100 PSI-BLAST uses sequence profiles to carry out iterative searches ЮО CONTENTS 5.5 Pattern recognition methods incorporate conserved sequence signatures THE RISK OF FALSE-POSITIVE ANNOTATIONS Chapter 6 The analysis of i Structures 101 104 107 6.1 INTRODUCTION 107 6.2 STRUCTURAL GENOMICS AND STRUCTURE SPACE 110 Coverage of structure space is currently uneven 110 Structure and function are not always related 113 6.3 TECHNIQUES FOR SOLVING PROTEIN STRUCTURES 114 X-ray diffraction requires well-ordered protein crystals 114 NMR spectroscopy exploits the magnetic properties of certain atomic nuclei 116 Additional methods for structural analysis mainly provide supporting data 118 6.4 PROTEIN STRUCTURE PREDICTION 119 Structural predictions can bridge the gap between sequence and structure 119 Protein secondary structures can be predicted from sequence data 120 Tertiary structures can be predicted by comparative modeling if a template structure is available 122 Ab initio prediction methods attempt to construct structures from first principles 123 Fold recognition (threading) is based on similarities between nonhomologous folds 123 6.5 COMPARISON OF PROTEIN STRUCTURES 124 6.6 STRUCTURAL CLASSIFICATION OF PROTEINS 125 6.7 GLOBAL STRUCTURAL GENOMICS INITIATIVES 126 Chápte 7 Interaction proteomics 131 7.1 INTRODUCTION 131 7.2 METHODS TO STUDY PROTEIN-PROTEIN INTERACTIONS 134 Genetic methods suggest interactions from the combined effects of two mutations in the same cell or organism 134 Protein interactions can be suggested by comparative genomics and homology transfer 135 Affinity-based biochemical methods provide direct evidence that proteins can interact 138 Interactions between proteins in vitro and in vivo can be established by resonance energy transfer 142 Surface plasmon resonance can indicate the mass of interacting proteins 142 7.3 LIBRARY-BASED METHODS FOR THE GLOBAL ANALYSIS OF BINARY INTERACTIONS 143 7.4 TWO-HYBRID/PROTEIN COMPLEMENTATION ASSAYS 145 The yeast two-hybrid system works by assembling a transcription factor from two inactive fusion proteins 145 Several large-scale interaction screens have been carried out using different yeast two-hybrid screening strategies 146 Conventional yeast two-hybrid screens have a significant error rate 148 7.5 MODIFIED TWO-HYBRID SYSTEMS FOR MEMBRANE, CYTOSOUC, AND EXTRACELLULAR PROTEINS 149 7.6 BACTERIAL AND MAMMALIAN TWO-HYBRID SYSTEMS 150 7.7 LUMIER AND MAPPIT HIGH- THROUGHPUT TWO-HYBRID PLATFORMS 151 7.8 ADAPTED HYBRID ASSAYS FOR DIFFERENT TYPES OF INTERACTIONS 152 7.9 SYSTEMATIC COMPLEX ANALYSIS BY TANDEM AFFINITY PURIFICATION- MASS SPECTROMETRY 153 7.10 ANALYSIS OF PROTEIN INTERACTION DATA 155 7.11 PROTEIN INTERACTION MAPS 156 7.12 PROTEIN INTERACTIONS WITH SMALL MOLECULES 158 Chapter 8 Protein modification in proteomics Protein phosphorylation is a key regulatory mechanism 165 165 8.1 INTRODUCTION 8.2 METHODS FOR THE DETECTION OF POST-TRANSLATIONAL MODIFICATIONS 167 8.3 ENRICHMENT STRATEGIES FOR MODIFIED PROTEINS AND PEPTIDES 168 8.4 PHOSPHOPROTEOMICS 170 170 Separated phosphoproteins can be detected with specific staining reagents 172 CONTENTS Xl Sample preparation for phosphoprotein analysis typically involves enrichment using antibodies or strongly cationic chromatography resins 173 8.5 ANALYSIS OF PHOSPHOPROTEINS BY MASS SPECTROMETRY 176 A combination of Edman degradation and mass spectrometry can be used to map phosphorylation sites 176 Intact phosphopeptide ions can be identified by MALDI-TOF mass spectrometry 176 Phosphopeptides yield diagnostic marker ions and neutral loss products 177 8.6 QUANTITATIVE ANALYSIS OF PHOSPHOPROTEINS 180 8.7 GLYCOPROTEOMICS 181 Glycoproteins represent more than half of the eukaryotic proteome 181 Glycans play important roles in protein stability, activity, and localization, and are important indicators of disease 183 Conventional glycoanalysis involves the use of enzymes that remove specific glycan groups and the separation of glycoproteins by electrophoresis 184 Glycoprotein-specific staining allows the glycoprotein to be studied by 2DGE 187 There are two principal methods for glycoprotein enrichment that have complementary uses 188 Mass spectrometry is used for the high- throughput identification and characterization of glycoproteins 189 Chapter 9 Protein microarrays 191 9.1 INTRODUCTION 191 9.2 THE EVOLUTION OF PROTEIN MICROARRAYS 191 9.3 DIFFERENT TYPES OF PROTEIN MICROARRAYS 193 Analytical, functional, and reverse microarrays are distinguished by their purpose and the nature of the interacting components 193 Analytical microarrays contain antibodies or other capture reagents 194 Functional protein microarrays can be used to study a wide range of biochemical functions 196 9.4 THE MANUFACTURE OF FUNCTIONAL PROTEIN MICROARRAYS—PROTEIN SYNTHESIS 197 Proteins can be synthesized by the parallel construction of many expression vectors 197 Cell-free expression systems allow the direct synthesis of protein arrays in situ 9.5 THE MANUFACTURE OF FUNCTIONAL PROTEIN MICROARRAYS—PROTEIN IMMOBILIZATION 9.6 THE DETECTION OF PROTEINS ON MICROARRAYS Methods that require labels can involve either direct or indirect detection Label-free methods do not affect the intrinsic properties of interacting proteins 9.7 197 201 203 203 204 EMERGING PROTEIN CHIP TECHNOLOGIES 207 Bead and particle arrays in solution represent the next generation of protein microarrays 207 Cell and tissue arrays allow the direct analysis of proteins in vivo 207 Chapter 10 Applications of proteomics 211 10.1 INTRODUCTION 211 10.2 DIAGNOSTIC APPLICATIONS OF PROTEOMICS 212 Proteomics is used to identify biomarkers of disease states 212 Biomarkers can be discovered by finding plus/minus or quantitative differences between samples 215 More sensitive techniques can be used to identify biomarker profiles 218 10.3 APPLICATIONS OF PROTEOMICS IN DRUG DEVELOPMENT 219 Proteomics can help to select drug targets and develop lead compounds 219 Proteomics is also useful for target validation 222 Chemical proteomics can be used to select and develop lead compounds 222 Proteomics can be used to assess drug toxicity during clinical development 224 10.4 PROTEOMICS IN AGRICULTURE 225 Proteomics provides novel markers in plant breeding and genetics 225 Proteomics can be used for the analysis of genetically modified plants 227 10.5 PROTEOMICS IN INDUSTRY- IMPROVING THE YIELD OF SECONDARY METABOLISM 228 Glossary 231 Index 248
any_adam_object 1
author Twyman, Richard M.
author_facet Twyman, Richard M.
author_role aut
author_sort Twyman, Richard M.
author_variant r m t rm rmt
building Verbundindex
bvnumber BV041218618
callnumber-first Q - Science
callnumber-label QP551
callnumber-raw QP551
callnumber-search QP551
callnumber-sort QP 3551
callnumber-subject QP - Physiology
classification_rvk WC 4170
WD 5100
ctrlnum (OCoLC)862984490
(DE-599)BVBBV041218618
dewey-full 572/.6
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 572 - Biochemistry
dewey-raw 572/.6
dewey-search 572/.6
dewey-sort 3572 16
dewey-tens 570 - Biology
discipline Biologie
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01561nam a2200433zc 4500</leader><controlfield tag="001">BV041218618</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140428 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130814s2014 xxkad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2013021694</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780815344728</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-0-8153-4472-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)862984490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041218618</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP551</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572/.6</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 4170</subfield><subfield code="0">(DE-625)148093:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 5100</subfield><subfield code="0">(DE-625)148194:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Twyman, Richard M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of proteomics</subfield><subfield code="c">Richard M. Twyman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY [u.a.]</subfield><subfield code="b">Garland Science</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 260 S., [4] Bl.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteins</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Proteom</subfield><subfield code="0">(DE-588)4576155-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Proteomanalyse</subfield><subfield code="0">(DE-588)4596545-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Proteom</subfield><subfield code="0">(DE-588)4576155-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Proteomanalyse</subfield><subfield code="0">(DE-588)4596545-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026193229&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026193229</subfield></datafield></record></collection>
id DE-604.BV041218618
illustrated Illustrated
indexdate 2024-07-10T00:42:22Z
institution BVB
isbn 9780815344728
language English
lccn 2013021694
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-026193229
oclc_num 862984490
open_access_boolean
owner DE-703
DE-355
DE-BY-UBR
DE-29T
DE-19
DE-BY-UBM
owner_facet DE-703
DE-355
DE-BY-UBR
DE-29T
DE-19
DE-BY-UBM
physical XI, 260 S., [4] Bl. Ill., graph. Darst.
publishDate 2014
publishDateSearch 2014
publishDateSort 2014
publisher Garland Science
record_format marc
spelling Twyman, Richard M. Verfasser aut
Principles of proteomics Richard M. Twyman
2. ed.
New York, NY [u.a.] Garland Science 2014
XI, 260 S., [4] Bl. Ill., graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
Proteomics
Proteins
Proteom (DE-588)4576155-3 gnd rswk-swf
Proteomanalyse (DE-588)4596545-6 gnd rswk-swf
Proteom (DE-588)4576155-3 s
Proteomanalyse (DE-588)4596545-6 s
DE-604
Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026193229&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Twyman, Richard M.
Principles of proteomics
Proteomics
Proteins
Proteom (DE-588)4576155-3 gnd
Proteomanalyse (DE-588)4596545-6 gnd
subject_GND (DE-588)4576155-3
(DE-588)4596545-6
title Principles of proteomics
title_auth Principles of proteomics
title_exact_search Principles of proteomics
title_full Principles of proteomics Richard M. Twyman
title_fullStr Principles of proteomics Richard M. Twyman
title_full_unstemmed Principles of proteomics Richard M. Twyman
title_short Principles of proteomics
title_sort principles of proteomics
topic Proteomics
Proteins
Proteom (DE-588)4576155-3 gnd
Proteomanalyse (DE-588)4596545-6 gnd
topic_facet Proteomics
Proteins
Proteom
Proteomanalyse
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026193229&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT twymanrichardm principlesofproteomics