Probability in complex physical systems in honour of Erwin Bolthausen and Jürgen Gärtner

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Heidelberg [u.a.] Springer 2012
Schriftenreihe:Springer proceedings in mathematics 11
Schlagworte:
Online-Zugang:Inhaltstext
Zentralblatt MATH
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV041213806
003 DE-604
005 20160511
007 t|
008 130809s2012 xx ad|| |||| 01||| eng d
015 |a 11N32  |2 dnb 
016 7 |a 1014072530  |2 DE-101 
020 |a 3642238106  |c Gb.  |9 3-642-23810-6 
020 |a 9783642238109  |c Gb.  |9 978-3-642-23810-9 
035 |a (OCoLC)811251140 
035 |a (DE-599)DNB1014072530 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-83 
082 0 |a 519.2 
084 |a 33.06  |2 bkl 
084 |a 82-06  |2 msc 
084 |a 31.70  |2 bkl 
084 |a 60-06  |2 msc 
245 1 0 |a Probability in complex physical systems  |b in honour of Erwin Bolthausen and Jürgen Gärtner  |c Jean-Dominique Deuschel ... ed. 
264 1 |a Heidelberg [u.a.]  |b Springer  |c 2012 
300 |a XIX, 512 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Springer proceedings in mathematics  |v 11 
650 0 7 |a Anderson-Modell  |0 (DE-588)4120888-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Stochastischer Prozess  |0 (DE-588)4057630-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Statistische Physik  |0 (DE-588)4057000-9  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
655 7 |0 (DE-588)4016928-5  |a Festschrift  |2 gnd-content 
689 0 0 |a Statistische Physik  |0 (DE-588)4057000-9  |D s 
689 0 1 |a Stochastischer Prozess  |0 (DE-588)4057630-9  |D s 
689 0 2 |a Anderson-Modell  |0 (DE-588)4120888-2  |D s 
689 0 |5 DE-604 
700 1 |a Deuschel, Jean-Dominique  |d 1957-  |e Sonstige  |0 (DE-588)129802956  |4 oth 
700 1 |a Bolthausen, Erwin  |d 1945-  |0 (DE-588)108913035X  |4 hnr 
700 1 |a Gärtner, Jürgen  |d 1950-  |0 (DE-588)108963269X  |4 hnr 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-642-23811-6 
830 0 |a Springer proceedings in mathematics  |v 11  |w (DE-604)BV039878163  |9 11 
856 4 |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=3863652&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 |m DE-601  |q pdf/application  |u http://zbmath.org/?q=an:1235.60005  |y Zentralblatt MATH  |3 Inhaltstext 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026188480&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-026188480 

Datensatz im Suchindex

_version_ 1819749205493678080
adam_text IMAGE 1 CONTENTS LAUDATIO: THE MATHEMATICAL WORK O F JIIRGEN GARTNER 1 FRANK DEN HOLLANDER 1 GARTNER-ELLIS LARGE DEVIATION PRINCIPLE 1 2 KOLMOGOROV-PETROVSKII-PISKUNOV EQUATION 3 3 DAWSON-GARTNER PROJECTIVE LIMIT LARGE DEVIATION PRINCIPLE 4 4 MCKEAN-VLASOV EQUATION 5 5 PARABOLIC ANDERSON MODEL 6 6 PERSONAL REMARKS 8 REFERENCES 9 PART I THE PARABOLIC ANDERSON MODEL THE PARABOLIC ANDERSON MODEL WITH LONG RANGE BASIC HAMILTONIAN AND WEIBULL TYPE RANDOM POTENTIAL 13 STANISLAV MOLCHANOV AND HAO ZHANG 1 DEDICATION AND INTRODUCTION 13 2 THE ANNEALED AND QUENCHED ASYMPTOTIC PROPERTIES O F U(T, 0) WITH WEIBULL POTENTIAL V ( X , CO M ): P{V{-) X } = EXP { - . . . 2 0 3 THE ANNEALED AND QUENCHED ASYMPTOTIC PROPERTIES OF U(T, 0) WITH POTENTIAL V{X,U M ) O F THE FORM L {V{.) ,V[ - E X P { - ; ; / . ( . V ) } 23 4 CONCLUDING REMARK 30 REFERENCES 3 0 PARABOLIC ANDERSON MODEL WITH VOTER CATALYSTS: DICHOTOMY IN THE BEHAVIOR O F LYAPUNOV EXPONENTS 33 GREGORY MAILLARD, THOMAS MOUNTFORD, AND SAMUEL SCHOPFER 1 INTRODUCTION 34 1.1 MODEL 34 1.2 VOTER MODEL 34 1.3 LYAPUNOV EXPONENTS 35 1.4 MAIN RESULTS 38 XI HTTP://D-NB.INFO/1014072530 IMAGE 2 XII C O N T E N T S 2 PROOF O F THEOREMS 1.1 AND 1.3 39 2.1 COARSE-GRAINING AND SKELETONS 4 0 2.2 THE BAD ENVIRONMENT SET B E 42 2.3 THE BAD RANDOM WALK SET BW 4 8 2.4 PROOF OF THEOREM 1.1 51 3 PROOF O F THEOREM 1.4 51 4 PROOF OF THEOREM 1.4 62 REFERENCES 67 PRECISE ASYMPTOTICS FOR THE PARABOLIC ANDERSON MODEL WITH A MOVING CATALYST OR TRAP 6 9 ADRIAN SCHNITZLER AND TILMAN WOLFF 1 INTRODUCTION 7 0 2 MOVING TRAP 73 2.1 LOCALIZED INITIAL CONDITION 7 4 2.2 HOMOGENEOUS INITIAL CONDITION 7 5 3 MOVING CATALYST 79 3.1 SPECTRAL PROPERTIES OF HIGHER-ORDER ANDERSON HAMILTONIANS 8 0 3.2 APPLICATION TO ANNEALED HIGHER MOMENT ASYMPTOTICS 87 REFERENCES 88 PARABOLIC ANDERSON MODEL WITH A FINITE NUMBER O F MOVING CATALYSTS 91 FABIENNE CASTELL, ONUR GUN, AND GREGORY MAILLARD 1 INTRODUCTION 9 2 1.1 MODEL 92 1.2 LYAPUNOV EXPONENTS AND INTERMITTENCY 93 1.3 LITERATURE 94 1.4 MAIN RESULTS 95 1.5 DISCUSSION 99 2 PROOF OF THEOREM 1.1 100 3 PROOF O F THEOREMS 1.2-1.3 106 3.1 PROOF OF THEOREM 1.2 106 3.2 PROOF O F THEOREM 1.3 107 4 PROOF OF THEOREM 1.4 108 5 PROOF O F COROLLARY 1.1 110 APPENDIX I L L REFERENCES 116 SURVIVAL PROBABILITY O F A RANDOM WALK AMONG A POISSON SYSTEM O F MOVING TRAPS 119 ALEXANDER DREWITZ, JIIRGEN GARTNER, ALEJANDRO F. RAMIREZ, AND RONGFENG SUN 1 INTRODUCTION 120 1.1 MODEL AND RESULTS 120 1.2 RELATION TO THE PARABOLIC ANDERSON MODEL 122 IMAGE 3 CONTENTS XIII 1.3 REVIEW OF RELATED RESULTS 123 1.4 OUTLINE 125 2 ANNEALED SURVIVAL PROBABILITY 126 2.1 EXISTENCE OF THE ANNEALED LYAPUNOV EXPONENT 126 2.2 SPECIAL CASE K = 0 128 2.3 LOWER BOUND ON THE ANNEALED SURVIVAL PROBABILITY 131 2.4 UPPER BOUND ON THE ANNEALED SURVIVAL PROBABILITY. THE PASCAL PRINCIPLE 133 3 QUENCHED AND SEMI-ANNEALED UPPER BOUNDS 138 4 EXISTENCE AND POSITIVITY O F THE QUENCHED LYAPUNOV EXPONENT 144 4.1 SHAPE THEOREM AND THE QUENCHED LYAPUNOV EXPONENT 144 4.2 PROOF O F SHAPE THEOREM FOR BOUNDED ERGODIC POTENTIALS 148 4.3 EXISTENCE O F THE QUENCHED LYAPUNOV EXPONENT FOR THE PAM 151 4.4 POSITIVITY O F THE QUENCHED LYAPUNOV EXPONENT 154 REFERENCES 157 QUENCHED LYAPUNOV EXPONENT FOR THE PARABOLIC ANDERSON MODEL IN A DYNAMIC RANDOM ENVIRONMENT 159 JIIRGEN GARTNER, FRANK DEN HOLLANDER, AND GREGORY MAILLARD 1 INTRODUCTION 160 1.1 PARABOLIC ANDERSON MODEL 160 1.2 LYAPUNOV EXPONENTS 162 1.3 LITERATURE 163 1.4 MAIN RESULTS 167 1.5 DISCUSSION AND OPEN PROBLEMS 168 2 PROOF O F THEOREMS 1.1-1.3 170 2.1 PROOF OF THEOREM 1.1 170 2.2 PROOF O F THEOREM 1.2(I) 171 2.3 PROOF O F THEOREM 1.2(II) 173 2.4 PROOF O F THEOREM 1.2(III) 177 2.5 PROOF O F THEOREM 1.3(I) 179 2.6 PROOF O F THEOREM 1.3(III) 180 2.7 PROOF O F THEOREM 1.3(II) 186 3 PROOF OF THEOREMS 1.4-1.6 189 3.1 PROOF O F THEOREM 1.4 189 3.2 PROOF O F THEOREM 1.5 189 3.3 PROOF O F THEOREM 1.6 191 REFERENCES 192 ASYMPTOTIC SHAPE AND PROPAGATION O F FRONTS FOR GROWTH MODELS IN DYNAMIC RANDOM ENVIRONMENT 195 HARRY KESTEN, ALEJANDRO F. RAMIREZ, AND VLADAS SIDORAVICIUS 1 INTRODUCTION 195 2 SPREAD O F AN INFECTION IN A MOVING POPULATION ( D A 0, D B 0 ) 199 2.1 SHAPE THEOREM 199 2.2 PHASE TRANSITION 206 IMAGE 4 X I V C O N T E N T S 3 THE STOCHASTIC COMBUSTION PROCESS ( DA = 0, D G 0) 208 3.1 SHAPE THEOREM 208 3.2 THE STOCHASTIC COMBUSTION PROCESS IN DIMENSION D = 1 209 3.3 ACTIVATED RANDOM WALKS MODEL AND ABSORBING STATE PHASE TRANSITION 215 4 MODIFIED DIFFUSION LIMITED AGGREGATION ( D A 0, D K - 0) 216 REFERENCES 222 THE PARABOLIC ANDERSON MODEL WITH ACCELERATION AND DECELERATION 225 WOLFGANG KONIG AND SYLVIA SCHMIDT 1 INTRODUCTION 225 2 ASSUMPTIONS AND PRELIMINARIES 227 2.1 MODEL ASSUMPTIONS 227 2.2 VARIATIONAL FORMULAS 228 3 RESULTS 230 3.1 FIVE PHASES 230 3.2 MOMENT ASYMPTOTICS 231 3.3 VARIATIONAL CONVERGENCE 232 4 PROOF O F VARIATIONAL CONVERGENCE (PROPOSITION 3.3) 233 5 PROOF FOR PHASES 1-3 (THEOREM 3.1) 238 6 PROOF FOR PHASE 4 (THEOREM 3.2) 242 REFERENCES 244 A SCALING LIMIT THEOREM FOR THE PARABOLIC ANDERSON MODEL WITH EXPONENTIAL POTENTIAL 247 HUBERT LACOIN AND PETER MORTERS 1 INTRODUCTION AND MAIN RESULTS 247 1.1 OVERVIEW AND BACKGROUND 247 1.2 STATEMENT O F RESULTS 251 2 PROOF O F THE MAIN RESULTS 252 2.1 OVERVIEW 252 2.2 AUXILIARY RESULTS 254 2.3 UPPER BOUNDS 257 2.4 ANALYSIS O F THE VARIATIONAL PROBLEM 265 2.5 PROOF O F THE ALMOST SURE ASYMPTOTICS 267 2.6 PROOF OF THE WEAK ASYMPTOTICS 268 2.7 PROOF OF THE SCALING LIMIT THEOREM 269 3 CONCLUDING REMARKS 271 REFERENCES 271 PART II SELF-INTERACTING RANDOM WALKS AND POLYMERS THE STRONG INTERACTION LIMIT O F CONTINUOUS-TIME WEAKLY SELF-AVOIDING WALK 275 DAVID C. BRYDGES, ANTOINE DAHLQVIST, AND GORDON SLADE 1 DOMB-JOYCE MODEL: DISCRETE TIME 275 IMAGE 5 CONTENTS X V 2 THE CONTINUOUS-TIME WEAKLY SELF-AVOIDING WALK 277 2.1 FIXED-LENGTH WALKS 278 2.2 TWO-POINT FUNCTION 281 REFERENCES 286 COPOLYMERS AT SELECTIVE INTERFACES: SETTLED ISSUES AND OPEN PROBLEMS 289 FRANCESCO CARAVENNA, GIAMBATTISTA GIACOMIN, AND FABIO LUCIO TONINELLI 1 COPOLYMERS AND SELECTIVE SOLVENTS 289 1.1 A BASIC MODEL 289 1.2 THE (GENERAL) COPOLYMER MODEL 291 1.3 THE FREE ENERGY: LOCALIZATION AND DEREALIZATION 293 1.4 THE PHASE DIAGRAM 294 1.5 THE CRITICAL BEHAVIOR AND A WORD ABOUT PINNING MODELS 298 1.6 ORGANISATION O F THE CHAPTER 299 2 LOCALIZATION ESTIMATES 300 3 DEREALIZATION ESTIMATES 302 3.1 FRACTIONAL MOMENT METHOD: THE GENERAL PRINCIPLE 302 3.2 FRACTIONAL MOMENT METHOD: APPLICATION 303 4 CONTINUUM MODEL AND WEAK COUPLING LIMIT 304 5 PATH PROPERTIES 306 5.1 THE LOCALIZED PHASE 307 5.2 THE DELOCALIZED PHASE 308 REFERENCES 310 SOME LOCALLY SELF-INTERACTING WALKS ON THE INTEGERS 313 ANNA ERSCHLER, BALINT TOTH, AND WENDELIN WERNER 1 INTRODUCTION 313 2 SURVEY OF LEFT-RIGHT SYMMETRIC CASES 318 2.1 WHEN B 0 AND -B/3 A B: THE TRSM REGIME? 318 2.2 WHEN B 0 AND A -B/3: THE STUCK CASE 319 2.3 WHEN B 0 AND A B: THE SLOW PHASE? 320 2.4 THE TWO CRITICAL CASES 322 2.5 STATIONARY MEASURES FOR THE CASES WHERE B 0 AND - B / 3 A B 323 2.6 . SOME COMMENTS 326 3 SOME CASES WITHOUT LEFT-RIGHT SYMMETRY 327 3.1 SETUP AND STATEMENT 327 3.2 THE SCENARIO 329 3.3 AUXILIARY SEQUENCES 331 3.4 THE COUPLING 332 3.5 AN EXAMPLE WITH LOGARITHMIC BEHAVIOUR 334 3.6 BALLISTIC BEHAVIOUR 336 4 SOME OPEN QUESTIONS 337 REFERENCES 338 IMAGE 6 X V I C O N T E N T S STRETCHED POLYMERS IN RANDOM ENVIRONMENT 339 DMITRY IOFFE AND YVAN VELENIK 1 INTRODUCTION 339 1.1 CLASS O F MODELS 340 1.2 BALLISTIC AND SUB-BALLISTIC PHASES 342 1.3 LYAPUNOV EXPONENTS 343 1.4 VERY WEAK, WEAK, AND STRONG DISORDER 344 2 LARGE DEVIATIONS 345 2.1 RAMIFICATIONS FOR BALLISTIC BEHAVIOR 346 2.2 PROOF O F LEMMA 1 347 3 GEOMETRY O F TYPICAL POLYMERS 348 3.1 SKELETONS O F PATHS 348 3.2 ANNEALED MODELS 349 3.3 QUENCHED MODELS 350 3.4 IRREDUCIBLE DECOMPOSITION AND EFFECTIVE DIRECTED STRUCTURE 354 3.5 BASIC PARTITION FUNCTIONS 355 4 THE ANNEALED MODEL 356 4.1 ASYMPTOTICS O F T = T V , 356 4.2 GEOMETRY O F K , ANNEALED LLN AND CLT 357 4.3 LOCAL LIMIT THEOREM FOR THE ANNEALED POLYMER 358 5 WEAK DISORDER 359 5.1 LLN AT SUPERCRITICAL DRIFTS 359 5.2 VERY WEAK DISORDER 360 5.3 CONVERGENCE O F PARTITION FUNCTIONS 361 5.4 QUENCHED CLT 364 6 STRONG DISORDER 365 6.1 NORMALIZATION 366 6.2 REDUCTION TO BASIC PARTITION FUNCTIONS 366 6.3 FRACTIONAL MOMENTS 367 REFERENCES 368 PART III BRANCHING PROCESSES MULTISCALE ANALYSIS: FISHER-WRIGHT DIFFUSIONS WITH RARE MUTATIONS AND SELECTION, LOGISTIC BRANCHING SYSTEM 373 DONALD A. DAWSON AND ANDREAS GREVEN 1 MOTIVATION AND BACKGROUND 374 1.1 OUTLINE 376 2 THE FISHER-WRIGHT MODEL WITH RARE MUTATION AND SELECTION 376 2.1 A TWO-TYPE MEAN-FIELD DIFFUSION MODEL AND ITS DESCRIPTION 376 2.2 TWO TIME WINDOWS FOR THE SPREAD O F THE ADVANTAGEOUS TYPE 378 2.3 THE EARLY TIME WINDOW AS N -** OO 379 2.4 THE LATE TIME WINDOW AS N - OO 382 IMAGE 7 CONTENTS X V L L 3 A LOGISTIC BRANCHING RANDOM WALK AND ITS GROWTH 388 3.1 THE LOGISTIC BRANCHING PARTICLE MODEL 388 3.2 THE EARLY TIME WINDOW AS N - OO 390 3.3 THE DROPLET EXPANSION AND CRUMP-MODE-JAGERS PROCESSES 391 3.4 TIME POINT O F EMERGENCE AS N - OO 394 3.5 THE LATE TIME WINDOW AS N - OO 395 4 THE DUALITY RELATION 398 4.1 A CLASSICAL DUALITY FORMULA 398 4.2 THE GENEALOGY AND DUALITY 400 4.3 THE DUAL FOR GENERAL TYPE SPACE 401 4.4 OUTLOOK ON SET-VALUED DUALS 406 REFERENCES 407 PROPERTIES OF STATES O F SUPER-A-STABLE MOTION WITH BRANCHING O F INDEX 1 + FT 409 KLAUS FLEISCHMANN, LEONID MYTNIK, AND VITALI WACHTEL 1 MODEL: SUPER-A-STABLE MOTION WITH BRANCHING O F INDEX 1 + /3 410 2 DICHOTOMY OF STATES AT FIXED TIMES 411 3 ABSOLUTELY CONTINUOUS STATES 411 3.1 DICHOTOMY OF DENSITY FUNCTIONS 411 3.2 LOCAL HOLDER CONTINUITY O F CONTINUOUS DENSITY FUNCTIONS 412 3.3 SOME TRANSITION CURIOSITY 413 3.4 HOLDER CONTINUITY AT A GIVEN POINT 413 3.5 SOME OPEN PROBLEMS 415 4 MAIN TOOLS TO GET THE HDLDER STATEMENTS 417 REFERENCES 421 PART IV MISCELLANEOUS TOPICS IN STATISTICAL MECHANICS A QUENCHED LARGE DEVIATION PRINCIPLE AND A PARISI FORMULA FOR A PERCEPTRON VERSION O F THE GREM 425 ERWIN BOLTHAUSEN AND NICOLA KISTLER 1 INTRODUCTION 425 2 A PERCEPTRON VERSION O F THE GREM 426 3 PROOFS 430 3.1 THE GIBBS VARIATIONAL PRINCIPLE: PROOF O F THEOREM 2.3 430 3.2 THE DUAL REPRESENTATION. PROOF O F THE THEOREM 2.5 438 REFERENCES 442 METASTABILITY: FROM MEAN FIELD MODELS TO SPDES 443 ANTON BOVIER 1 INTRODUCTION 443 1.1 STOCHASTIC ISING MODELS 444 2 THE CURIE-WEISS MODEL 445 IMAGE 8 XVIII C O N T E N T S 3 LARGE DEVIATIONS 447 3.1 DIFFUSIONS WITH SMALL DIFFUSIVITY 448 3.2 JUMP PROCESSES UNDER RESCALING 448 3.3 MARKOV PROCESSES WITH EXPONENTIALLY SMALL TRANSITION PROBABILITIES 449 3.4 LARGE DEVIATIONS BY MASSIVE ENTROPY PRODUCTION 449 4 LIMITATIONS O F THE LARGE DEVIATION APPROACH AND ALTERNATIVES 450 5 CAPACITY ESTIMATES 452 5.1 RANDOM PATH REPRESENTATION AND LOWER BOUNDS ON CAPACITIES 454 5.2 CAPACITY ESTIMATES FOR MESOSCOPIC CHAINS AND THE RETURN O F D = 1 456 6 STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 458 7 OPEN ISSUES 459 7.1 INITIAL DISTRIBUTIONS AND REGULARITY THEORY 460 7.2 CANONICAL CONSTRUCTIONS O F FLOWS 460 REFERENCES 461 HYDRODYNAMIC LIMIT FOR THE V P INTERFACE MODEL VIA TWO-SCALE APPROACH 463 TADAHISA FUNAKI 1 INTRODUCTION 463 1.1 SETTING 464 1.2 THE GINZBURG-LANDAU V P INTERFACE MODEL 465 1.3 MAIN RESULT 466 2 A PRIORI ESTIMATES 469 3 PROOF OF THEOREM 1.1 470 3.1 DERIVATIVE O F &{T) 471 3.2 THE TERM H 471 3.3 THE TERM L 473 3.4 SUMMARY AND COMPLETION OF THE PROOF OF THEOREM 1.1 479 4 VALIDITY O F ASSUMPTION A FOR CONVEX POTENTIALS 479 4.1 ASSUMPTION A-(2) 479 4.2 ASSUMPTION A-(L) 480 REFERENCES 489 STATISTICAL MECHANICS ON ISORADIAL GRAPHS 491 CEDRIC BOUTILLIER AND BEATRICE DE TILIERE 1 INTRODUCTION 491 1.1 TRANSFER MATRICES, STAR TRANSFORMATIONS, AND Z-INVARIANCE 493 1.2 CONFORMAL FIELD THEORY AND DISCRETE COMPLEX ANALYSIS 495 2 DISCRETE COMPLEX ANALYSIS ON ISORADIAL GRAPHS 495 2.1 DISCRETE HOLOMORPHIC AND DISCRETE HARMONIC FUNCTIONS 495 2.2 DISCRETE EXPONENTIAL FUNCTIONS 497 2.3 GEOMETRIC INTEGRABILITY O F DISCRETE CAUCHY-RIEMANN EQUATIONS - 498 2.4 GENERALIZATION OF THE OPERATOR 3 498 IMAGE 9 CONTENTS X I X 3 DIMER MODEL 499 3.1 DIRAC OPERATOR AND ITS INVERSE 501 3.2 DIRAC OPERATOR AND DIMER MODEL 502 3.3 OTHER RESULTS 503 4 ISING MODEL 504 4.1 CONFORMAL INVARIANCE 505 4.2 THE TWO-DIMENSIONAL ISING MODEL AS A DIMER MODEL 507 5 OTHER MODELS 508 5.1 RANDOM WALK AND THE GREEN FUNCTION 508 5.2 G-POTTS MODELS AND THE RANDOM CLUSTER MODEL 509 5.3 6-VERTEX AND 8-VERTEX MODELS 510 REFERENCES 510
any_adam_object 1
author_GND (DE-588)129802956
(DE-588)108913035X
(DE-588)108963269X
building Verbundindex
bvnumber BV041213806
ctrlnum (OCoLC)811251140
(DE-599)DNB1014072530
dewey-full 519.2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.2
dewey-search 519.2
dewey-sort 3519.2
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02412nam a2200553 cb4500</leader><controlfield tag="001">BV041213806</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160511 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">130809s2012 xx ad|| |||| 01||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">11N32</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1014072530</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3642238106</subfield><subfield code="c">Gb.</subfield><subfield code="9">3-642-23810-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642238109</subfield><subfield code="c">Gb.</subfield><subfield code="9">978-3-642-23810-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)811251140</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1014072530</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.06</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">82-06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60-06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probability in complex physical systems</subfield><subfield code="b">in honour of Erwin Bolthausen and Jürgen Gärtner</subfield><subfield code="c">Jean-Dominique Deuschel ... ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Heidelberg [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 512 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer proceedings in mathematics</subfield><subfield code="v">11</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anderson-Modell</subfield><subfield code="0">(DE-588)4120888-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4016928-5</subfield><subfield code="a">Festschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Anderson-Modell</subfield><subfield code="0">(DE-588)4120888-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deuschel, Jean-Dominique</subfield><subfield code="d">1957-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)129802956</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bolthausen, Erwin</subfield><subfield code="d">1945-</subfield><subfield code="0">(DE-588)108913035X</subfield><subfield code="4">hnr</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gärtner, Jürgen</subfield><subfield code="d">1950-</subfield><subfield code="0">(DE-588)108963269X</subfield><subfield code="4">hnr</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-23811-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer proceedings in mathematics</subfield><subfield code="v">11</subfield><subfield code="w">(DE-604)BV039878163</subfield><subfield code="9">11</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3863652&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="m">DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">http://zbmath.org/?q=an:1235.60005</subfield><subfield code="y">Zentralblatt MATH</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026188480&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026188480</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
(DE-588)4016928-5 Festschrift gnd-content
genre_facet Aufsatzsammlung
Festschrift
id DE-604.BV041213806
illustrated Illustrated
indexdate 2024-12-24T03:33:00Z
institution BVB
isbn 3642238106
9783642238109
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-026188480
oclc_num 811251140
open_access_boolean
owner DE-83
owner_facet DE-83
physical XIX, 512 S. Ill., graph. Darst.
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher Springer
record_format marc
series Springer proceedings in mathematics
series2 Springer proceedings in mathematics
spellingShingle Probability in complex physical systems in honour of Erwin Bolthausen and Jürgen Gärtner
Springer proceedings in mathematics
Anderson-Modell (DE-588)4120888-2 gnd
Stochastischer Prozess (DE-588)4057630-9 gnd
Statistische Physik (DE-588)4057000-9 gnd
subject_GND (DE-588)4120888-2
(DE-588)4057630-9
(DE-588)4057000-9
(DE-588)4143413-4
(DE-588)4016928-5
title Probability in complex physical systems in honour of Erwin Bolthausen and Jürgen Gärtner
title_auth Probability in complex physical systems in honour of Erwin Bolthausen and Jürgen Gärtner
title_exact_search Probability in complex physical systems in honour of Erwin Bolthausen and Jürgen Gärtner
title_full Probability in complex physical systems in honour of Erwin Bolthausen and Jürgen Gärtner Jean-Dominique Deuschel ... ed.
title_fullStr Probability in complex physical systems in honour of Erwin Bolthausen and Jürgen Gärtner Jean-Dominique Deuschel ... ed.
title_full_unstemmed Probability in complex physical systems in honour of Erwin Bolthausen and Jürgen Gärtner Jean-Dominique Deuschel ... ed.
title_short Probability in complex physical systems
title_sort probability in complex physical systems in honour of erwin bolthausen and jurgen gartner
title_sub in honour of Erwin Bolthausen and Jürgen Gärtner
topic Anderson-Modell (DE-588)4120888-2 gnd
Stochastischer Prozess (DE-588)4057630-9 gnd
Statistische Physik (DE-588)4057000-9 gnd
topic_facet Anderson-Modell
Stochastischer Prozess
Statistische Physik
Aufsatzsammlung
Festschrift
url http://deposit.dnb.de/cgi-bin/dokserv?id=3863652&prov=M&dok_var=1&dok_ext=htm
http://zbmath.org/?q=an:1235.60005
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026188480&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV039878163
work_keys_str_mv AT deuscheljeandominique probabilityincomplexphysicalsystemsinhonouroferwinbolthausenandjurgengartner
AT bolthausenerwin probabilityincomplexphysicalsystemsinhonouroferwinbolthausenandjurgengartner
AT gartnerjurgen probabilityincomplexphysicalsystemsinhonouroferwinbolthausenandjurgengartner