Advanced geotechnical engineering soil-structure interaction using computer and material models

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Desai, Chandrakant S. 1936- (VerfasserIn), Zaman, Musharraf (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton [u.a.] CRC Press 2014
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Klappentext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV041195249
003 DE-604
005 20141125
007 t
008 130731s2014 ad|| |||| 00||| eng d
020 |a 9781466515604  |c hbk  |9 978-1-4665-1560-4 
035 |a (OCoLC)867139197 
035 |a (DE-599)BVBBV041195249 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-29  |a DE-703 
084 |a RB 10126  |0 (DE-625)142220:12625  |2 rvk 
084 |a TZ 9000  |0 (DE-625)145177:  |2 rvk 
084 |a ZI 6100  |0 (DE-625)156469:  |2 rvk 
100 1 |a Desai, Chandrakant S.  |d 1936-  |e Verfasser  |0 (DE-588)120456060  |4 aut 
245 1 0 |a Advanced geotechnical engineering  |b soil-structure interaction using computer and material models  |c Chandrakant S. Desai ; Musharraf Zaman 
264 1 |a Boca Raton [u.a.]  |b CRC Press  |c 2014 
300 |a XXII, 616 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Bodenmechanik  |0 (DE-588)4007385-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Geomechanik  |0 (DE-588)4126903-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Grundbau  |0 (DE-588)4022320-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Geotechnik  |0 (DE-588)4156771-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Ingenieurgeologie  |0 (DE-588)4125674-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Ingenieurgeologie  |0 (DE-588)4125674-8  |D s 
689 0 1 |a Geotechnik  |0 (DE-588)4156771-7  |D s 
689 0 |5 DE-604 
689 1 0 |a Geomechanik  |0 (DE-588)4126903-2  |D s 
689 1 1 |a Bodenmechanik  |0 (DE-588)4007385-3  |D s 
689 1 |5 DE-604 
689 2 0 |a Grundbau  |0 (DE-588)4022320-6  |D s 
689 2 |5 DE-604 
689 3 0 |a Geotechnik  |0 (DE-588)4156771-7  |D s 
689 3 |5 DE-604 
700 1 |a Zaman, Musharraf  |e Verfasser  |4 aut 
856 4 2 |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026170244&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026170244&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
999 |a oai:aleph.bib-bvb.de:BVB01-026170244 

Datensatz im Suchindex

_version_ 1804150618391052288
adam_text Contents^ Preface ....................................................................................................................xvii Authors ....................................................................................................................xix Chapter 1 Introduction ..........................................................................................1 1.1 Importance of Interaction ..........................................................2 1.2 Importance of Material Behavior ..............................................3 1.2.1 Linear Elastic Behavior ................................................3 1.2.2 Inelastic Behavior .........................................................4 1.2.3 Continuous Yield Behavior ..........................................4 1.2.4 Creep Behavior .............................................................4 1.2.5 Discontinuous Behavior ...............................................4 1.2.6 Material Parameters .....................................................5 1.3 Ranges of Applicability of Models ............................................6 1.4 Computer Methods ....................................................................6 1.5 Fluid Flow ..................................................................................7 1.6 Scope and Contents ...................................................................7 References ............................................................................................8 Chapter 2 Beam-Columns, Piles, and Walls: One-Dimensional Simulation ......11 2.1 Introduction .............................................................................11 2.2 Beams with Spring Soil Model ...............................................11 2.2.1 Governing Equations for Beams with Winkler Model ..........................................................................11 2.2.2 Governing Equations for Flexible Beams ..................13 2.2.3 Solution .......................................................................14 2.3 Laterally Loaded (One-Dimensional) Pile ..............................15 2.3.1 Coefficients A, B, C, D: Based on Boundary Conditions ..................................................................15 2.3.2 Pile of Infinite Length ................................................16 2.3.3 Lateral Load at Top ....................................................16 2.3.4 Moment at Top ............................................................19 2.3.5 Pile Fixed against Rotation at Top .............................20 2.3.6 Example 2.1: Analytical Solution for Load at Top of Pile with Overhang ................................................22 2.3.7 Example 2.2: Long Piłę Loaded at Top with No Rotation ......................................................................25 2.4 Numerical Solutions ................................................................25 2.4.1 Finite Difference Method ...........................................26 2.4.1.1 First-Order Derivative: Central Difference .................................................26 vu viii Contents 2.4.1.2 Second Derivative.......................................27 2.4.1.3 Boundary Conditions ..................................27 2.4.2 Example 23: Finite Difference Method: Long Pile Restrained against Rotation at Top .....................35 2.5 Finite Element Method: One-Dimensional Simulation ...........40 2.5.1 One-Dimensional Finite Element Method .................40 2.5.2 Details of Finite Element Method ..............................42 2.5.2.1 Bending Behavior .......................................42 2.5.2.2 Axial Behavior ............................................43 2.5.3 Boundary Conditions .................................................46 2.5.3.1 Applied Forces ............................................47 2.6 Soil Behavior: Resistance—Displacement (Py—v от p—ý) Representation .........................................................................47 2.6.1 One-Dimensional Response .......................................48 2.6.2 py— v (p—ý) Representation and Curves .......................48 2.6.3 Simulation of py—v Curves ..........................................50 2.6.4 Determination of py— v (p—y) Curves ..........................51 2.6.4.1 Ultimate Soil Resistance .............................52 2.6.4.2 Ultimate Soil Resistance for Clays .............52 2.6.4.3 py— v Curves for Yielding Behavior .............55 2.6.4.4 py-v Curves for Stiff Clay ..........................56 2.6.4.5 py—v Curves for Sands .................................57 2.6.5 Py—v Curves for Cyclic Behavior ................................59 2.6.6 Ramberg-Osgood Model (R-O) for Representation of py— v Curves ...................................60 2.7 One-Dimensional Simulation of Retaining Structures ...........60 2.7.1 Calculations for Soil Modulus, Es ..............................62 2.7.1.1 Terzaghi Method .........................................62 2.7.2 Nonlinear Soil Response ............................................62 2.7.2.1 Ultimate Soil Resistance .............................62 2.7.2.2 py-v Curves .................................................63 2.8 Axially Loaded Piles ...............................................................64 2.8.1 Boundary Conditions .................................................66 2.8.2 Tip Behavior ...............................................................67 2.8.3 Soil Resistance Curves at Tip .....................................68 2.8.4 Finite Difference Method for Axially Loaded Piles .... 68 2.8.5 Nonlinear Axial Response .........................................69 2.8.6 Procedure for Developing τ, -u (t-z) Curves ..............69 2.8.6.1 Steps for Construction of тѕ— и (ţ—z) Curves ......................................................69 2.9 Torsionai Load on Piles ...........................................................70 2.9.1 Finite Difference Method for Torsionally Loaded Pile .................................................................72 2.9.2 Finite Element Method for Torsionally Loaded Pile .........................................................................73 2.9.3 Design Quantities .......................................................74 Contents ¡x 2.10 Examples .................................................................................74 2.10.1 Example 2.4: ρ — ν Curves for Normally Consolidated Clay ......................................................74 2.10.2 Example 2.5: Laterally Loaded Pile in Stiff Clay ......81 2.10.2.1 Development of py-v Curves ......................83 2.10.3 Example 2.6: py— ν Curves for Cohesionless Soil .......88 2.10.4 Simulation of py— ν Curve by Using Ramberg— Osgood Model ............................................................92 2.10.5 Example 2.7: Axially Loaded Pile: xs—u (r-z), gp—up Curves ...............................................................95 2.10.5.1 τ, -м Behavior ..............................................95 2.10.5.2 Parameter, m .............................................101 2.10.5.3 Back Prediction for τ,-ι* Curve ................102 2.10.5.4 Tip Resistance ...........................................102 2.10.6 Example 2.8: Laterally Loaded Pile — A Field Problem ....................................................................104 2.10.6.1 Linear Analysis .........................................104 2.10.6.2 Incremental Nonlinear Analysis ...............105 2.10.7 Example 2.9: One-Dimensional Simulation of Three-Dimensional Loading on Piles ......................106 2.10.8 Example 2.10: Tie-Back Sheet Pile Wall by One- Dimensional Simulation ...........................................108 2.10.9 Example 2.11: Hyperbolic Simulation for py— ν Curves ........................................................ .............. 110 2.10.10 Example 2.12: py-v Curves from 3-D Finite Element Model ......................................................... 115 2.10.10.1 Construction of py-v Curves ..................... 117 Problems ...........................................................................................120 References ........................................................................................134 Chapter 3 Two- and Three-Dimensional Finite Element Static Formulations and Two-Dimensional Applications ...........................139 3.1 Introduction ...........................................................................139 3.2 Finite Element Formulations .................................................139 3.2.1 Element Equations ....................................................144 3.2.2 Numerical Integration ..............................................146 3.23 Assemblage or Global Equation ...............................146 3.2.4 Solution of Global Equations ...................................148 3.2.5 Solved Quantities .....................................................148 3.3 Nonlinear Behavior ......,........................................................148 3.4 Sequential Construction ........................................................149 3.4.1 Dewatering ...............................................................151 3.4.2 Embankment ............................................................152 3.4.2.1 Simulation of Embankment ...................... 152 3.4.3 Excavation .......................-..........,............................154 x Contents 3.4.3.1 Installation of Support Systems................155 3.4.3.2 Superstructure........................................... 156 3.5 Examples ...............................................................................156 3.5.1 Example 3.1: Footings on Clay .................................156 3.5.2 Example 3.2: Footing on Sand .................................160 3.5.3 Example 3.3: Finite Element Analysis of Axially Loaded Piles .............................................................164 3.5.3.1 Finite Element Analysis ............................165 3.5.3.2 Results .......................................................167 3.5.4 Example 3.4: Two-Dimensional Analysis of Piles Using Hrennikoff Method ........................................173 3.5.5 Example 3.5: Model Retaining Wall — Active Earth Pressure ..........................................................177 3.5.5.1 Finite Element Analysis ............................179 3.5.5.2 Validations ................................................180 3.5.6 Example 3.6: Gravity Retaining Wall ...................... 181 3.5.6.1 Interface Behavior ....................................183 3.5.6.2 Earth Pressure System ..............................183 3.5.7 Example 3.7: U-Frame, Port Allen Lock ..................184 3.5.7.1 Finite Element Analysis ............................186 3.5.7.2 Material Modeling ....................................189 3.5.7.3 Results .......................................................189 3.5.8 Example 3.8: Columbia Lock and Pile Foundations .... 189 3.5.8.1 Constitutive Models ..................................191 3.5.8.2 Two-Dimensional Approximation ............197 3.5.9 Example 3.9: Underground Works: Powerhouse Cavern ......................................................................202 3.5.9.1 Validations ................................................205 3.5.9.2 DSC Modeling of Rocks ...........................206 3.5.9.3 Hydropower Project ..................................206 3.5.10 Example 3.10: Analysis of Creeping Slopes .............215 3.5.11 Example 3.11: Twin Tunnel Interaction ....................219 3.5.12 Example 3.12: Field Behavior of Reinforced Earth Retaining Wall ...............................................225 3.5.12.1 Description of Wall ...................................225 3.5.12.2 Numerical Modeling .................................227 3.5.12.3 Construction Simulation ...........................228 3.5.12.4 Constitutive Models ..................................228 3.5Л2.5 Testing and Parameters .............................230 3.5.12.6 Predictions of Field Measurements ..........230 Problems ...........................................................................................235 References ........................................................................................237 Chapter 4 Three-Dimensional Applications .....................................................243 4.1 Introduction ........„......«.„......................................................243 Contents x¡ 4.2 Mu It ¿component Procedure ...................................................244 4.2.1 Pile as Beam-Column ..............................................245 4.2.2 Pile Cap as Plate Bending ........................................247 4.2.2.1 In-Plane Response ....................................247 4.2.2.2 Lateral (Downward) Loading on Cap- Bending Response ....................................249 4.2.3 Assemblage or Global Equations .............................251 4.2.4 Torsion ......................................................................251 4.2.5 Representation of Soil ..............................................252 4.2.6 Stress Transfer ..........................................................252 4.3 Examples ...............................................................................253 4.3.1 Example 4.1: Deep Beam .........................................253 4.3.2 Example 4.2: Slab on Elastic Foundation .................254 4.3.3 Example 4.3: Raft Foundation ..................................257 4.3.4 Example 4.4: Mat Foundation and Frame System ... 258 4.3.5 Example 4.5: Three-Dimensional Analysis of Pile Groups: Extended Hrennikoff Method .............261 4.3.6 Example 4.6: Model Cap-Pile Group-Soil Problem: Approximate 3-D Analysis .......................268 4.3.6.1 Comments .................................................272 4.3.7 Example 4.7: Model Cap-Pile Group-Soil Problem — Full 3-D Analysis ...................................273 4.3.7.1 Properties of Materials .............................273 4.3.7.2 Interface Element ......................................275 43.8 Example 4.8: Laterally Loaded Piles —3-D Analysis ....................................................................276 4.3.8.1 Finite Element Analysis ............................277 4.3.8.2 Results .......................................................280 4.3.9 Example 4.9: Anchor-Soil System ...........................280 4.3.9.1 Constitutive Models for Sand and Interfaces ..................................................281 4.3.10 Example 4.10: Three-Dimensional Analysis of Pavements: Cracking and Failure .............................283 4.3.11 Example 4.11 : Analysis for Railroad Track Support Structures ....................................................289 4.3.11.1 Nonlinear Analyses ..................................289 4.3.12 Example 4.12: Analysis of Buried Pipeline with Elbows ......................................................................293 4.3.13 Example 4.13: Laterally Loaded Tool (Pile) in Soil with Material and Geometric Nonlinearkies....297 4.3.13.1 Constitutive Laws .....................................302 4.3.13.2 Validation ..................................................304 4.3.14 Example 4.14: Three-Dimensional Slope .................307 4.3Л4.1 Results .......................................................309 Problems ...........................................................................................310 References ........................................................................................317 xii Contents Chapter 5 Flow through Porous Media: Seepage .............................................323 5.1 Introduction ...........................................................................323 5.2 Governing Differential Equation ..........................................323 5.2. 1 Boundary Conditions ...............................................324 5.3 Numerical Methods ...............................................................326 5.3.1 Finite Difference Method .........................................327 5.3.1.1 Steady-State Confined Seepage ................327 5.3.1.2 Time-Dependent Free Surface Flow Problem .....................................................329 5.3.1.3 Implicit Procedure ....................................330 5.3.1.4 Alternating Direction Explicit Procedure (ADEP) ....................................330 5.3.2 Example 5.1: Transient Free Surface in River Banks ........................................................................336 5.4 Finite Element Method ..........................................................338 5.4.1 Confined Steady-State Seepage ................................339 5.4.1.1 Velocities and Quantity of Flow ...............340 5.4.2 Example 5.2: Steady Confined Seepage in Foundation of Dam ...................................................341 5.4.2.1 Hydraulic Gradients ..................................344 5.4.3 Steady Unconfined or Free Surface Seepage ...........345 5.4.3.1 Variable Mesh Method .............................346 5.4.4 Unsteady or Transient Free Surface Seepage ...........349 5.4.5 Example 5.3: Steady Free Surface Seepage in Homogeneous Dam by VM Method ........................350 5.4.6 Example 5.4: Steady Free Surface Seepage in Zoned Dam by VM Method .....................................351 5.4.7 Example 5.5: Steady Free Surface Seepage in Dam with Core and Shell by VM Method ...............351 5.4.8 Example 5.6: Steady Confined/Unconfined Seepage through Cofferdam and Berm ....................353 5.4.8.1 Initial Free Surface ...................................357 5.5 Invariant Mesh or Fixed Domain Methods ...........................357 5.5.1 Residual Flow Procedure .........................................358 Finite Element Method .............................360 Time Integration .......................................362 Assemblage Global Equations ..................363 Residual Flow Procedure ..........................363 Surface of Seepage ...................................365 Comments .................................................365 5.6 Applications: Invariant Mesh Using RFP ..............................367 5.6.1 Example 5.7: Steady Free Surface in Zoned Dam .....367 5.6.2 Example 5.8: Transient Seepage in River Banks ......367 5.6.3 Example 5.9: Comparisons between RFP and VI Methods ....................................................................369 5.5.1 l.l 5.5J 1.2 5.5.1 1.3 5.5.1 1.4 5.5.1 1.5 5.5. 1 1.6 Contents xiii 5.6.4 Example 5.10: Three-Dimensional Seepage ............370 5.6.5 Example 5.11: Combined Stress, Seepage, and Stability Analysis .....................................................373 5.6.6 Example 5.12: Field Analysis of Seepage in River Banks ..............................................................383 5.6.7 Example 5.13: Transient Three-Dimensional Flow .....385 5.6.8 Example 5.14: Three-Dimensional Flow under Rapid Drawdown ......................................................390 5.6.9 Example 5.15: Saturated—Unsaturated Seepage .......392 Problems ...........................................................................................397 Appendix A ......................................................................................398 One-Dimensional Unconfined Seepage .................................398 Finite Element Method ..........................................................398 References ........................................................................................405 Chapter 6 Flow through Porous Deformable Media: One-Dimensional Consolidation ....................................................................................409 6.1 Introduction ...........................................................................409 6.2 One-Dimensional Consolidation ...........................................409 6.2.1 Review of One-Dimensional Consolidation .............409 6.2.2 Governing Differential Equations ............................410 6.2.2.1 Boundary Conditions ................................411 6.2.3 Stress-Strain Behavior .............................................412 6.2.3.1 Boundary Conditions ................................413 6.3 Nonlinear Stress—Strain Behavior .........................................414 6.3.1 Procedure 1: Nonlinear Analysis .............................414 6.3.2 Procedure 2: Nonlinear Analysis .............................416 6.3.2.1 Settlement .................................................416 6.3.3 Alternative Consolidation Equation .........................416 6.3.3.1 Pervious Boundary ...................................417 6.3.3.2 Impervious Boundary at 2H .....................417 6.4 Numerical Methods ...............................................................418 6.4.1 Finite Difference Method .........................................418 6.4.1.1 FD Scheme No. 1: Simple Explicit ...........418 6.4.1.2 FD Scheme No. 2: Implicit, Crank- Nicholson Scheme .....................................419 6.4.1.3 FD Scheme No. 3: Another Implicit Scheme ......................................................419 6.4.1.4 FD Scheme No. 4A: Special Explicit Scheme ......................................................419 6.4.1.5 FD Scheme No. 4B: Special Explicit ........420 6.4.2 Finite Element Method .............................................420 6.4.2.1 Solution in Time .......................................423 6.4.2.2 Assemblage Equations ..............................425 6.4.2.3 Boundary Conditions or Constraints ........425 xiv Contents 6.4.2.4 Solution in Time .......................................426 6.4.2.5 Material Parameters ..................................426 6.5 Examples ...............................................................................426 6.5.1 Example 6.1: Layered Soil — Numerical Solutions by Various Schemes .................................................426 6.5.2 Example 6.2: Two-Layered System ..........................428 6.5.3 Example 6.3: Test Embankment on Soft Clay ..........429 6.5.4 Example 6.4: Consolidation for Layer Thickness Increases with Time .................................................432 6.5.5 Example 6.5: Nonlinear Analysis .............................432 6.5.6 Example 6.6: Strain-Based Analysis of Consolidation in Layered Clay .................................436 6.5.6.1 Numerical Example ..................................442 6.5.7 Example 6.7: Comparison of Uncoupled and Coupled Solutions .....................................................442 6.5.7.1 Uncoupled Solution ...................................443 6.5.7.2 Coupled Solution .......................................445 6.5.7.3 Numerical Example ..................................446 References ........................................................................................448 Chapter 7 Coupled Flow through Porous Media: Dynamics and Consolidation ....................................................................................451 7.1 Introduction ...........................................................................451 7.2 Governing Differential Equations .........................................451 7.2.1 Porosity .....................................................................451 7.2.2 Constitutive Laws .....................................................454 7.2.2.1 Volumetric Behavior .................................455 7.3 Dynamic Equations of Equilibrium ......................................456 7.4 Finite Element Formulation ...................................................457 7.4.1 Time Integration: Dynamic Analysis .......................460 7.4.1.1 Newmark Method .....................................460 7.4.2 Cyclic Unloading and Reloading ..............................463 7.4.2.1 Parameters ................................................466 7.4.2.2 Reloading ..................................................467 7.5 Special Cases: Consolidation and Dynamics-Dry Problem ..468 7.5.1 Consolidation ............................................................468 7.5.1.1 Dynamics-Dry Problem ............................470 7.5.2 Liquefaction ..............................................................471 7.6 Applications ...........................................................................474 7.6.1 Example 7.1: Dynamic Pile Load Tests: Coupled Behavior ...................................................................474 7.6.1.1 Simulation of Phases .................................478 7.6.2 Example 7.2: Dynamic Analysis of Pile- Centrifuge Test including Liquefaction ....................483 Contents xv 7.6.2.1 Comparison between Predictions and Test Data ...................................................488 7.63 Example 7.3: Structure—Soil Problem Tested Using Centrifuge ......................................................491 7.6.3.1 Material Properties ...................................493 7.6.3.2 Results .......................................................497 7.6.4 Example 7.4: Cyclic and Liquefaction Response in Shake Table Test ...................................................498 7.6.4.1 Results .......................................................500 7.6.5 Example 7.5: Dynamic and Consolidation Response of Mine Tailing Dam ...............................501 7.6.5.1 Material Properties ...................................509 7.6.5.2 Finite Element Analysis ............................510 7.6.5.3 Dynamic Analysis ....................................511 7.6.5.4 Earthquake Analysis .................................511 7.6.5.5 Design Quantities .....................................513 7.6.5.6 Liquefaction ..............................................514 7.6.5.7 Results .......................................................514 7.6.5.8 Validation for Flow Quantity ....................515 7.6.5.9 Qx across a-b-c-d (Figure 7.40)..............516 7.6.6 Example 7.6: Soil—Structure Interaction: Effect of Interface Response ...............................................517 7.6.6.1 Comparisons .............................................518 7.6.7 Example 7.7: Dynamic Analysis of Simple Block.... 521 7.6.8 Example 7.8: Dynamic Structure—Foundation Analysis ....................................................................523 7.6.8.1 Results .......................................................528 7.6.9 Example 7.9: Consolidation of Layered Varved Clay Foundation .......................................................530 7.6.9.1 Material Properties ...................................530 7.6.9.2 Field Measurements ..................................534 7.6.9.3 Finite Element Analysis ............................534 7.6.10 Example 7.10: Axisymmetric Consolidation ............536 7.6Л0. 1 Details of Boundary Conditions ...............537 7.6.10.2 Results... ....................................................539 7.6.11 Example 7.11: Two-Dimenskmal Nonlinear Consolidation ............................................................540 7.6.11.1 Results .......................................................540 7.6.12 Example 7.12: Subsidence Due to Consolidation .....542 7.6.12.1 Linear Analysis: Set 1...............................543 7.6.12.2 Nonlinear Analysis ...................................545 7.6.13 Example 7.13: Three-Dimensional Consolidation.... 545 7.6.14 Example 7.14: Three-Dimensional Consolidation with Vacuum Preloading ..........................................547 References ........................................................................................552 xvi Contents Appendix 1: Constitutive Models, Parameters, and Determination...............557 Al.l Introduction ..........................................................................557 Al .2 Elasticity Models..................................................................557 Al. 2.1 Limitations ..............................................................558 Al .2.2 Nonlinear Elasticity ................................................560 A 1.2.3 Stress-Strain Behavior by Hyperbola .....................560 Al.2.4 Parameter Determination for Hyperbolic Model.... 560 Al. 2.4.1 Poisson s Ratio ........................................561 A 1.3 Normal Behavior ..................................................................563 A 1.4 Hyperbolic Mode] for Interfaces/Joints ................................563 A 1.4.1 Unloading and Reloading in Hyperbolic Model .....565 A1.5 Ramberg—Osgood Model .....................................................566 A1.6 Variable Moduli Models .......................................................567 A1.7 Conventional Plasticity .........................................................567 A 1.7.1 von Mises................................................................ 568 Al. 7.1.1 Compression Test (σ,, σ2 = σ,) ...............570 A L7.2 Plane Strain .............................................................570 A 1.7.3 Mohr-Coulomb Model ...........................................570 A1.8 Continuous Yield Plasticity: Critical State Model ...............571 Al.8.1 Cap Model ...............................................................574 A 1.8.2 Limitations of Critical State and Cap Models ........576 A1.9 Hierarchical Single Surface Plasticity ..................................576 A 1.9.1 Nonassociated Behavior (Ą-Model) .......................578 Al.9.2 Parameters ..............................................................578 Al.9.2.1 Elasticity .................................................578 Al.9.2.2 Plasticity .................................................578 A 1.9.2.3 Transition Parameter: η ..........................579 Al.9.2.4 Yield Function ........................................580 Al.9.2.5 Cohesive Intercept ..................................581 Al.9.2.6 Nonassociative Parameter, к ..................581 Al. 10 Creep Models .......................................................................581 AMO.! Yield Function ........... .............................................583 Al.l 1 Disturbed State Concept Models..... .....................................584 Al .11.1 DSC Equations.... ....................................................586 Al.l 1.2 Disturbance .............................................................587 Al.l 1.3 DSC Model for Interface or Joint ...........................589 A1.12 Summary ..............................................................................594 Al. 12.1 Parameters for Soils, Rocks, and Interfaces/Joints. 594 References... __................................................................................595 Appendix 2: Computer Software or Codes .......................................................597 A2. 1 Introduction ..........................................................................597 A2.2 List I: Finite Element Software System: DSC Software ......597 A2.3 List 2: Commercial Codes ....................................................598 Index ......................................................................................................................601 ioil— structure interaction is an area of major importance in geotechnical engineering an< geomechanics. Advanced Geotechnical Engineering: Soil-Structure Interaction Using Computer and Material Models covers computer and analytical methods for a number of geotechnical problems. It introduces the main factors important to the application of computer methods and constitutive models with emphasis on the behavior of soils, rocks, interfaces, and joints, all of which are vital for reliable and accurate solutions. This book presents the finite element (FE)f finite difference (FD), and analytical methods, and their applications using modern computers. In conjunction with the use of appropriate constitutive models, they provide realistic solutions to soil-structure problems. A part of this book is devoted to solving practical problems using hand calculations in addition to the use of computer methods. The book also introduces commercial computer codes as well as computer codes developed by the authors. This text is useful to practitioners, students, teachers, and researchers who have backgrounds in geotechnical, structural engineering, and basic mechanics courses.
any_adam_object 1
author Desai, Chandrakant S. 1936-
Zaman, Musharraf
author_GND (DE-588)120456060
author_facet Desai, Chandrakant S. 1936-
Zaman, Musharraf
author_role aut
aut
author_sort Desai, Chandrakant S. 1936-
author_variant c s d cs csd
m z mz
building Verbundindex
bvnumber BV041195249
classification_rvk RB 10126
TZ 9000
ZI 6100
ctrlnum (OCoLC)867139197
(DE-599)BVBBV041195249
discipline Geologie / Paläontologie
Bauingenieurwesen
Geographie
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02313nam a2200505 c 4500</leader><controlfield tag="001">BV041195249</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20141125 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130731s2014 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781466515604</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-4665-1560-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)867139197</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041195249</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10126</subfield><subfield code="0">(DE-625)142220:12625</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TZ 9000</subfield><subfield code="0">(DE-625)145177:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZI 6100</subfield><subfield code="0">(DE-625)156469:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Desai, Chandrakant S.</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120456060</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced geotechnical engineering</subfield><subfield code="b">soil-structure interaction using computer and material models</subfield><subfield code="c">Chandrakant S. Desai ; Musharraf Zaman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 616 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bodenmechanik</subfield><subfield code="0">(DE-588)4007385-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geomechanik</subfield><subfield code="0">(DE-588)4126903-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grundbau</subfield><subfield code="0">(DE-588)4022320-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geotechnik</subfield><subfield code="0">(DE-588)4156771-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ingenieurgeologie</subfield><subfield code="0">(DE-588)4125674-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ingenieurgeologie</subfield><subfield code="0">(DE-588)4125674-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geotechnik</subfield><subfield code="0">(DE-588)4156771-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geomechanik</subfield><subfield code="0">(DE-588)4126903-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Bodenmechanik</subfield><subfield code="0">(DE-588)4007385-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Grundbau</subfield><subfield code="0">(DE-588)4022320-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Geotechnik</subfield><subfield code="0">(DE-588)4156771-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zaman, Musharraf</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026170244&amp;sequence=000003&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026170244&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026170244</subfield></datafield></record></collection>
id DE-604.BV041195249
illustrated Illustrated
indexdate 2024-07-10T00:41:47Z
institution BVB
isbn 9781466515604
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-026170244
oclc_num 867139197
open_access_boolean
owner DE-29
DE-703
owner_facet DE-29
DE-703
physical XXII, 616 S. Ill., graph. Darst.
publishDate 2014
publishDateSearch 2014
publishDateSort 2014
publisher CRC Press
record_format marc
spelling Desai, Chandrakant S. 1936- Verfasser (DE-588)120456060 aut
Advanced geotechnical engineering soil-structure interaction using computer and material models Chandrakant S. Desai ; Musharraf Zaman
Boca Raton [u.a.] CRC Press 2014
XXII, 616 S. Ill., graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
Bodenmechanik (DE-588)4007385-3 gnd rswk-swf
Geomechanik (DE-588)4126903-2 gnd rswk-swf
Grundbau (DE-588)4022320-6 gnd rswk-swf
Geotechnik (DE-588)4156771-7 gnd rswk-swf
Ingenieurgeologie (DE-588)4125674-8 gnd rswk-swf
Ingenieurgeologie (DE-588)4125674-8 s
Geotechnik (DE-588)4156771-7 s
DE-604
Geomechanik (DE-588)4126903-2 s
Bodenmechanik (DE-588)4007385-3 s
Grundbau (DE-588)4022320-6 s
Zaman, Musharraf Verfasser aut
Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026170244&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026170244&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext
spellingShingle Desai, Chandrakant S. 1936-
Zaman, Musharraf
Advanced geotechnical engineering soil-structure interaction using computer and material models
Bodenmechanik (DE-588)4007385-3 gnd
Geomechanik (DE-588)4126903-2 gnd
Grundbau (DE-588)4022320-6 gnd
Geotechnik (DE-588)4156771-7 gnd
Ingenieurgeologie (DE-588)4125674-8 gnd
subject_GND (DE-588)4007385-3
(DE-588)4126903-2
(DE-588)4022320-6
(DE-588)4156771-7
(DE-588)4125674-8
title Advanced geotechnical engineering soil-structure interaction using computer and material models
title_auth Advanced geotechnical engineering soil-structure interaction using computer and material models
title_exact_search Advanced geotechnical engineering soil-structure interaction using computer and material models
title_full Advanced geotechnical engineering soil-structure interaction using computer and material models Chandrakant S. Desai ; Musharraf Zaman
title_fullStr Advanced geotechnical engineering soil-structure interaction using computer and material models Chandrakant S. Desai ; Musharraf Zaman
title_full_unstemmed Advanced geotechnical engineering soil-structure interaction using computer and material models Chandrakant S. Desai ; Musharraf Zaman
title_short Advanced geotechnical engineering
title_sort advanced geotechnical engineering soil structure interaction using computer and material models
title_sub soil-structure interaction using computer and material models
topic Bodenmechanik (DE-588)4007385-3 gnd
Geomechanik (DE-588)4126903-2 gnd
Grundbau (DE-588)4022320-6 gnd
Geotechnik (DE-588)4156771-7 gnd
Ingenieurgeologie (DE-588)4125674-8 gnd
topic_facet Bodenmechanik
Geomechanik
Grundbau
Geotechnik
Ingenieurgeologie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026170244&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026170244&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT desaichandrakants advancedgeotechnicalengineeringsoilstructureinteractionusingcomputerandmaterialmodels
AT zamanmusharraf advancedgeotechnicalengineeringsoilstructureinteractionusingcomputerandmaterialmodels