Advanced geotechnical engineering soil-structure interaction using computer and material models
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
CRC Press
2014
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041195249 | ||
003 | DE-604 | ||
005 | 20141125 | ||
007 | t | ||
008 | 130731s2014 ad|| |||| 00||| eng d | ||
020 | |a 9781466515604 |c hbk |9 978-1-4665-1560-4 | ||
035 | |a (OCoLC)867139197 | ||
035 | |a (DE-599)BVBBV041195249 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-29 |a DE-703 | ||
084 | |a RB 10126 |0 (DE-625)142220:12625 |2 rvk | ||
084 | |a TZ 9000 |0 (DE-625)145177: |2 rvk | ||
084 | |a ZI 6100 |0 (DE-625)156469: |2 rvk | ||
100 | 1 | |a Desai, Chandrakant S. |d 1936- |e Verfasser |0 (DE-588)120456060 |4 aut | |
245 | 1 | 0 | |a Advanced geotechnical engineering |b soil-structure interaction using computer and material models |c Chandrakant S. Desai ; Musharraf Zaman |
264 | 1 | |a Boca Raton [u.a.] |b CRC Press |c 2014 | |
300 | |a XXII, 616 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Bodenmechanik |0 (DE-588)4007385-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geomechanik |0 (DE-588)4126903-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Grundbau |0 (DE-588)4022320-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geotechnik |0 (DE-588)4156771-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ingenieurgeologie |0 (DE-588)4125674-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ingenieurgeologie |0 (DE-588)4125674-8 |D s |
689 | 0 | 1 | |a Geotechnik |0 (DE-588)4156771-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Geomechanik |0 (DE-588)4126903-2 |D s |
689 | 1 | 1 | |a Bodenmechanik |0 (DE-588)4007385-3 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Grundbau |0 (DE-588)4022320-6 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Geotechnik |0 (DE-588)4156771-7 |D s |
689 | 3 | |5 DE-604 | |
700 | 1 | |a Zaman, Musharraf |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026170244&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026170244&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-026170244 |
Datensatz im Suchindex
_version_ | 1804150618391052288 |
---|---|
adam_text | Contents^
Preface
....................................................................................................................xvii
Authors
....................................................................................................................xix
Chapter
1
Introduction
..........................................................................................1
1.1
Importance of Interaction
..........................................................2
1.2
Importance of Material Behavior
..............................................3
1.2.1
Linear Elastic Behavior
................................................3
1.2.2
Inelastic Behavior
.........................................................4
1.2.3
Continuous Yield Behavior
..........................................4
1.2.4
Creep Behavior
.............................................................4
1.2.5
Discontinuous Behavior
...............................................4
1.2.6
Material Parameters
.....................................................5
1.3
Ranges of Applicability of Models
............................................6
1.4
Computer Methods
....................................................................6
1.5
Fluid Flow
..................................................................................7
1.6
Scope and Contents
...................................................................7
References
............................................................................................8
Chapter
2
Beam-Columns, Piles, and Walls: One-Dimensional Simulation
......11
2.1
Introduction
.............................................................................11
2.2
Beams with Spring Soil Model
...............................................11
2.2.1
Governing Equations for Beams with Winkler
Model
..........................................................................11
2.2.2
Governing Equations for Flexible Beams
..................13
2.2.3
Solution
.......................................................................14
2.3
Laterally Loaded (One-Dimensional) Pile
..............................15
2.3.1
Coefficients A, B, C, D: Based on Boundary
Conditions
..................................................................15
2.3.2
Pile of Infinite Length
................................................16
2.3.3
Lateral Load at Top
....................................................16
2.3.4
Moment at Top
............................................................19
2.3.5
Pile Fixed against Rotation at Top
.............................20
2.3.6
Example
2.1:
Analytical Solution for Load at Top
of Pile with Overhang
................................................22
2.3.7
Example
2.2:
Long
Piłę
Loaded at Top with No
Rotation
......................................................................25
2.4
Numerical Solutions
................................................................25
2.4.1
Finite Difference Method
...........................................26
2.4.1.1
First-Order Derivative: Central
Difference
.................................................26
vu
viii Contents
2.4.1.2
Second
Derivative.......................................27
2.4.1.3
Boundary Conditions
..................................27
2.4.2
Example
23:
Finite Difference Method: Long
Pile Restrained against Rotation at Top
.....................35
2.5
Finite Element Method: One-Dimensional Simulation
...........40
2.5.1
One-Dimensional Finite Element Method
.................40
2.5.2
Details of Finite Element Method
..............................42
2.5.2.1
Bending Behavior
.......................................42
2.5.2.2
Axial Behavior
............................................43
2.5.3
Boundary Conditions
.................................................46
2.5.3.1
Applied Forces
............................................47
2.6
Soil Behavior: Resistance—Displacement (Py—v
от
p—ý)
Representation
.........................................................................47
2.6.1
One-Dimensional Response
.......................................48
2.6.2
py—
v (p—ý)
Representation and Curves
.......................48
2.6.3
Simulation of py—v Curves
..........................................50
2.6.4
Determination of py—
v (p—y)
Curves
..........................51
2.6.4.1
Ultimate Soil Resistance
.............................52
2.6.4.2
Ultimate Soil Resistance for Clays
.............52
2.6.4.3
py—
v
Curves for Yielding Behavior
.............55
2.6.4.4
py-v Curves for Stiff Clay
..........................56
2.6.4.5
py—v
Curves for Sands
.................................57
2.6.5
Py—v Curves for Cyclic Behavior
................................59
2.6.6
Ramberg-Osgood Model (R-O) for
Representation of py—
v
Curves
...................................60
2.7
One-Dimensional Simulation of Retaining Structures
...........60
2.7.1
Calculations for Soil Modulus, Es
..............................62
2.7.1.1
Terzaghi Method
.........................................62
2.7.2
Nonlinear Soil Response
............................................62
2.7.2.1
Ultimate Soil Resistance
.............................62
2.7.2.2
py-v Curves
.................................................63
2.8
Axially Loaded Piles
...............................................................64
2.8.1
Boundary Conditions
.................................................66
2.8.2
Tip Behavior
...............................................................67
2.8.3
Soil Resistance Curves at Tip
.....................................68
2.8.4
Finite Difference Method for Axially Loaded Piles
.... 68
2.8.5
Nonlinear Axial Response
.........................................69
2.8.6
Procedure for Developing
τ,
-u
(t-z) Curves
..............69
2.8.6.1
Steps for Construction of
тѕ—
и
(ţ—z)
Curves
......................................................69
2.9
Torsionai
Load on Piles
...........................................................70
2.9.1
Finite Difference Method for Torsionally
Loaded Pile
.................................................................72
2.9.2
Finite Element Method for Torsionally Loaded
Pile
.........................................................................73
2.9.3
Design Quantities
.......................................................74
Contents
¡x
2.10
Examples
.................................................................................74
2.10.1
Example
2.4:
ρ — ν
Curves for Normally
Consolidated Clay
......................................................74
2.10.2
Example
2.5:
Laterally Loaded Pile in Stiff Clay
......81
2.10.2.1
Development of py-v Curves
......................83
2.10.3
Example
2.6:
py—
ν
Curves for Cohesionless Soil
.......88
2.10.4
Simulation of py—
ν
Curve by Using
Ramberg—
Osgood Model
............................................................92
2.10.5
Example
2.7:
Axially Loaded Pile: xs—u (r-z),
gp—up Curves
...............................................................95
2.10.5.1
τ,
-м
Behavior
..............................................95
2.10.5.2
Parameter,
m
.............................................101
2.10.5.3
Back Prediction for
τ,-ι*
Curve
................102
2.10.5.4
Tip Resistance
...........................................102
2.10.6
Example
2.8:
Laterally Loaded Pile
—
A Field
Problem
....................................................................104
2.10.6.1
Linear Analysis
.........................................104
2.10.6.2
Incremental Nonlinear Analysis
...............105
2.10.7
Example
2.9:
One-Dimensional Simulation of
Three-Dimensional Loading on Piles
......................106
2.10.8
Example
2.10:
Tie-Back Sheet Pile Wall by One-
Dimensional Simulation
...........................................108
2.10.9
Example
2.11:
Hyperbolic Simulation for py—
ν
Curves
........................................................ .............. 110
2.10.10
Example
2.12:
py-v Curves from
3-D
Finite
Element Model
......................................................... 115
2.10.10.1
Construction of py-v Curves
..................... 117
Problems
...........................................................................................120
References
........................................................................................134
Chapter
3
Two- and Three-Dimensional Finite Element Static
Formulations and Two-Dimensional Applications
...........................139
3.1
Introduction
...........................................................................139
3.2
Finite Element Formulations
.................................................139
3.2.1
Element Equations
....................................................144
3.2.2
Numerical Integration
..............................................146
3.23
Assemblage or Global Equation
...............................146
3.2.4
Solution of Global Equations
...................................148
3.2.5
Solved Quantities
.....................................................148
3.3
Nonlinear Behavior
......,........................................................148
3.4
Sequential Construction
........................................................149
3.4.1
Dewatering
...............................................................151
3.4.2
Embankment
............................................................152
3.4.2.1
Simulation of Embankment
...................... 152
3.4.3
Excavation
.......................-..........,............................154
x
Contents
3.4.3.1 Installation
of
Support Systems................155
3.4.3.2
Superstructure...........................................
156
3.5
Examples
...............................................................................156
3.5.1
Example
3.1:
Footings on Clay
.................................156
3.5.2
Example
3.2:
Footing on Sand
.................................160
3.5.3
Example
3.3:
Finite Element Analysis of Axially
Loaded Piles
.............................................................164
3.5.3.1
Finite Element Analysis
............................165
3.5.3.2
Results
.......................................................167
3.5.4
Example
3.4:
Two-Dimensional Analysis of Piles
Using Hrennikoff Method
........................................173
3.5.5
Example
3.5:
Model Retaining Wall
—
Active
Earth Pressure
..........................................................177
3.5.5.1
Finite Element Analysis
............................179
3.5.5.2
Validations
................................................180
3.5.6
Example
3.6:
Gravity Retaining Wall
...................... 181
3.5.6.1
Interface Behavior
....................................183
3.5.6.2
Earth Pressure System
..............................183
3.5.7
Example
3.7:
U-Frame, Port Allen Lock
..................184
3.5.7.1
Finite Element Analysis
............................186
3.5.7.2
Material Modeling
....................................189
3.5.7.3
Results
.......................................................189
3.5.8
Example
3.8:
Columbia Lock and Pile Foundations
.... 189
3.5.8.1
Constitutive Models
..................................191
3.5.8.2
Two-Dimensional Approximation
............197
3.5.9
Example
3.9:
Underground Works: Powerhouse
Cavern
......................................................................202
3.5.9.1
Validations
................................................205
3.5.9.2
DSC Modeling of Rocks
...........................206
3.5.9.3
Hydropower Project
..................................206
3.5.10
Example
3.10:
Analysis of Creeping Slopes
.............215
3.5.11
Example
3.11:
Twin Tunnel Interaction
....................219
3.5.12
Example
3.12:
Field Behavior of Reinforced
Earth Retaining Wall
...............................................225
3.5.12.1
Description of Wall
...................................225
3.5.12.2
Numerical Modeling
.................................227
3.5.12.3
Construction Simulation
...........................228
3.5.12.4
Constitutive Models
..................................228
3.5Л2.5
Testing and Parameters
.............................230
3.5.12.6
Predictions of Field Measurements
..........230
Problems
...........................................................................................235
References
........................................................................................237
Chapter
4
Three-Dimensional Applications
.....................................................243
4.1
Introduction
........„......«.„......................................................243
Contents
x¡
4.2
Mu
It ¿component Procedure
...................................................244
4.2.1
Pile as Beam-Column
..............................................245
4.2.2
Pile Cap as Plate Bending
........................................247
4.2.2.1
In-Plane Response
....................................247
4.2.2.2
Lateral (Downward) Loading on Cap-
Bending Response
....................................249
4.2.3
Assemblage or Global Equations
.............................251
4.2.4
Torsion
......................................................................251
4.2.5
Representation of Soil
..............................................252
4.2.6
Stress Transfer
..........................................................252
4.3
Examples
...............................................................................253
4.3.1
Example
4.1:
Deep Beam
.........................................253
4.3.2
Example
4.2:
Slab on Elastic Foundation
.................254
4.3.3
Example
4.3:
Raft Foundation
..................................257
4.3.4
Example
4.4:
Mat Foundation and Frame System
... 258
4.3.5
Example
4.5:
Three-Dimensional Analysis of
Pile Groups: Extended Hrennikoff Method
.............261
4.3.6
Example
4.6:
Model Cap-Pile Group-Soil
Problem: Approximate
3-D
Analysis
.......................268
4.3.6.1
Comments
.................................................272
4.3.7
Example
4.7:
Model Cap-Pile Group-Soil
Problem
—
Full
3-D
Analysis
...................................273
4.3.7.1
Properties of Materials
.............................273
4.3.7.2
Interface Element
......................................275
43.8
Example
4.8:
Laterally Loaded Piles
—3-D
Analysis
....................................................................276
4.3.8.1
Finite Element Analysis
............................277
4.3.8.2
Results
.......................................................280
4.3.9
Example
4.9:
Anchor-Soil System
...........................280
4.3.9.1
Constitutive Models for Sand and
Interfaces
..................................................281
4.3.10
Example
4.10:
Three-Dimensional Analysis of
Pavements: Cracking and Failure
.............................283
4.3.11
Example
4.11 :
Analysis for Railroad Track
Support Structures
....................................................289
4.3.11.1
Nonlinear Analyses
..................................289
4.3.12
Example
4.12:
Analysis of Buried Pipeline with
Elbows
......................................................................293
4.3.13
Example
4.13:
Laterally Loaded Tool (Pile) in
Soil with Material and Geometric Nonlinearkies....297
4.3.13.1
Constitutive Laws
.....................................302
4.3.13.2
Validation
..................................................304
4.3.14
Example
4.14:
Three-Dimensional Slope
.................307
4.3Л4.1
Results
.......................................................309
Problems
...........................................................................................310
References
........................................................................................317
xii Contents
Chapter
5
Flow through Porous Media: Seepage
.............................................323
5.1
Introduction
...........................................................................323
5.2
Governing Differential Equation
..........................................323
5.2.
1 Boundary Conditions
...............................................324
5.3
Numerical Methods
...............................................................326
5.3.1
Finite Difference Method
.........................................327
5.3.1.1
Steady-State Confined Seepage
................327
5.3.1.2
Time-Dependent Free Surface Flow
Problem
.....................................................329
5.3.1.3
Implicit Procedure
....................................330
5.3.1.4
Alternating Direction Explicit
Procedure (ADEP)
....................................330
5.3.2
Example
5.1:
Transient Free Surface in River
Banks
........................................................................336
5.4
Finite Element Method
..........................................................338
5.4.1
Confined Steady-State Seepage
................................339
5.4.1.1
Velocities and Quantity of Flow
...............340
5.4.2
Example
5.2:
Steady Confined Seepage in
Foundation of Dam
...................................................341
5.4.2.1
Hydraulic Gradients
..................................344
5.4.3
Steady
Unconfined or
Free Surface Seepage
...........345
5.4.3.1
Variable Mesh Method
.............................346
5.4.4
Unsteady or Transient Free Surface Seepage
...........349
5.4.5
Example
5.3:
Steady Free Surface Seepage in
Homogeneous Dam by VM Method
........................350
5.4.6
Example
5.4:
Steady Free Surface Seepage in
Zoned Dam by VM Method
.....................................351
5.4.7
Example
5.5:
Steady Free Surface Seepage in
Dam with Core and Shell by VM Method
...............351
5.4.8
Example
5.6:
Steady Confined/Unconfined
Seepage through Cofferdam and
Berm
....................353
5.4.8.1
Initial Free Surface
...................................357
5.5
Invariant Mesh or Fixed Domain Methods
...........................357
5.5.1
Residual Flow Procedure
.........................................358
Finite Element Method
.............................360
Time Integration
.......................................362
Assemblage Global Equations
..................363
Residual Flow Procedure
..........................363
Surface of Seepage
...................................365
Comments
.................................................365
5.6
Applications: Invariant Mesh Using RFP
..............................367
5.6.1
Example
5.7:
Steady Free Surface in Zoned Dam
.....367
5.6.2
Example
5.8:
Transient Seepage in River Banks
......367
5.6.3
Example
5.9:
Comparisons between RFP and VI
Methods
....................................................................369
5.5.1
l.l
5.5J
1.2
5.5.1
1.3
5.5.1
1.4
5.5.1
1.5
5.5.
1
1.6
Contents xiii
5.6.4
Example
5.10:
Three-Dimensional Seepage
............370
5.6.5
Example
5.11:
Combined Stress, Seepage, and
Stability Analysis
.....................................................373
5.6.6
Example
5.12:
Field Analysis of Seepage in
River Banks
..............................................................383
5.6.7
Example
5.13:
Transient Three-Dimensional Flow
.....385
5.6.8
Example
5.14:
Three-Dimensional Flow under
Rapid Drawdown
......................................................390
5.6.9
Example
5.15:
Saturated—Unsaturated Seepage
.......392
Problems
...........................................................................................397
Appendix A
......................................................................................398
One-Dimensional Unconfined Seepage
.................................398
Finite Element Method
..........................................................398
References
........................................................................................405
Chapter
6
Flow through Porous Deformable Media: One-Dimensional
Consolidation
....................................................................................409
6.1
Introduction
...........................................................................409
6.2
One-Dimensional Consolidation
...........................................409
6.2.1
Review of One-Dimensional Consolidation
.............409
6.2.2
Governing Differential Equations
............................410
6.2.2.1
Boundary Conditions
................................411
6.2.3
Stress-Strain Behavior
.............................................412
6.2.3.1
Boundary Conditions
................................413
6.3
Nonlinear Stress—Strain Behavior
.........................................414
6.3.1
Procedure
1:
Nonlinear Analysis
.............................414
6.3.2
Procedure
2:
Nonlinear Analysis
.............................416
6.3.2.1
Settlement
.................................................416
6.3.3
Alternative Consolidation Equation
.........................416
6.3.3.1
Pervious Boundary
...................................417
6.3.3.2
Impervious Boundary at 2H
.....................417
6.4
Numerical Methods
...............................................................418
6.4.1
Finite Difference Method
.........................................418
6.4.1.1
FD Scheme No.
1:
Simple Explicit
...........418
6.4.1.2
FD Scheme No.
2:
Implicit, Crank-
Nicholson Scheme
.....................................419
6.4.1.3
FD Scheme No.
3:
Another Implicit
Scheme
......................................................419
6.4.1.4
FD Scheme No. 4A: Special Explicit
Scheme
......................................................419
6.4.1.5
FD Scheme No. 4B: Special Explicit
........420
6.4.2
Finite Element Method
.............................................420
6.4.2.1
Solution in Time
.......................................423
6.4.2.2
Assemblage Equations
..............................425
6.4.2.3
Boundary Conditions or Constraints
........425
xiv
Contents
6.4.2.4
Solution in Time
.......................................426
6.4.2.5
Material Parameters
..................................426
6.5
Examples
...............................................................................426
6.5.1
Example
6.1:
Layered Soil
—
Numerical Solutions
by Various Schemes
.................................................426
6.5.2
Example
6.2:
Two-Layered System
..........................428
6.5.3
Example
6.3:
Test Embankment on Soft Clay
..........429
6.5.4
Example
6.4:
Consolidation for Layer Thickness
Increases with Time
.................................................432
6.5.5
Example
6.5:
Nonlinear Analysis
.............................432
6.5.6
Example
6.6:
Strain-Based Analysis of
Consolidation in Layered Clay
.................................436
6.5.6.1
Numerical Example
..................................442
6.5.7
Example
6.7:
Comparison of Uncoupled and
Coupled Solutions
.....................................................442
6.5.7.1
Uncoupled Solution
...................................443
6.5.7.2
Coupled Solution
.......................................445
6.5.7.3
Numerical Example
..................................446
References
........................................................................................448
Chapter
7
Coupled Flow through Porous Media: Dynamics and
Consolidation
....................................................................................451
7.1
Introduction
...........................................................................451
7.2
Governing Differential Equations
.........................................451
7.2.1
Porosity
.....................................................................451
7.2.2
Constitutive Laws
.....................................................454
7.2.2.1
Volumetric Behavior
.................................455
7.3
Dynamic Equations of Equilibrium
......................................456
7.4
Finite Element Formulation
...................................................457
7.4.1
Time Integration: Dynamic Analysis
.......................460
7.4.1.1
Newmark Method
.....................................460
7.4.2
Cyclic Unloading and Reloading
..............................463
7.4.2.1
Parameters
................................................466
7.4.2.2
Reloading
..................................................467
7.5
Special Cases: Consolidation and Dynamics-Dry Problem
..468
7.5.1
Consolidation
............................................................468
7.5.1.1
Dynamics-Dry Problem
............................470
7.5.2
Liquefaction
..............................................................471
7.6
Applications
...........................................................................474
7.6.1
Example
7.1:
Dynamic Pile Load Tests: Coupled
Behavior
...................................................................474
7.6.1.1
Simulation of Phases
.................................478
7.6.2
Example
7.2:
Dynamic Analysis of Pile-
Centrifuge Test including Liquefaction
....................483
Contents xv
7.6.2.1
Comparison between Predictions and
Test Data
...................................................488
7.63
Example
7.3:
Structure—Soil Problem Tested
Using Centrifuge
......................................................491
7.6.3.1
Material Properties
...................................493
7.6.3.2
Results
.......................................................497
7.6.4
Example
7.4:
Cyclic and Liquefaction Response
in Shake Table Test
...................................................498
7.6.4.1
Results
.......................................................500
7.6.5
Example
7.5:
Dynamic and Consolidation
Response of Mine Tailing Dam
...............................501
7.6.5.1
Material Properties
...................................509
7.6.5.2
Finite Element Analysis
............................510
7.6.5.3
Dynamic Analysis
....................................511
7.6.5.4
Earthquake Analysis
.................................511
7.6.5.5
Design Quantities
.....................................513
7.6.5.6
Liquefaction
..............................................514
7.6.5.7
Results
.......................................................514
7.6.5.8
Validation for Flow Quantity
....................515
7.6.5.9
Qx across a-b-c-d (Figure
7.40)..............516
7.6.6
Example
7.6:
Soil—Structure Interaction: Effect
of Interface Response
...............................................517
7.6.6.1
Comparisons
.............................................518
7.6.7
Example
7.7:
Dynamic Analysis of Simple Block....
521
7.6.8
Example
7.8:
Dynamic Structure—Foundation
Analysis
....................................................................523
7.6.8.1
Results
.......................................................528
7.6.9
Example
7.9:
Consolidation of Layered Varved
Clay Foundation
.......................................................530
7.6.9.1
Material Properties
...................................530
7.6.9.2
Field Measurements
..................................534
7.6.9.3
Finite Element Analysis
............................534
7.6.10
Example
7.10:
Axisymmetric Consolidation
............536
7.6Л0.
1
Details of Boundary Conditions
...............537
7.6.10.2
Results...
....................................................539
7.6.11
Example
7.11:
Two-Dimenskmal Nonlinear
Consolidation
............................................................540
7.6.11.1
Results
.......................................................540
7.6.12
Example
7.12:
Subsidence Due to Consolidation
.....542
7.6.12.1
Linear Analysis: Set
1...............................543
7.6.12.2
Nonlinear Analysis
...................................545
7.6.13
Example
7.13:
Three-Dimensional Consolidation....
545
7.6.14
Example
7.14:
Three-Dimensional Consolidation
with Vacuum Preloading
..........................................547
References
........................................................................................552
xvi Contents
Appendix 1:
Constitutive
Models, Parameters, and Determination...............557
Al.l
Introduction
..........................................................................557
Al
.2
Elasticity
Models..................................................................557
Al.
2.1
Limitations
..............................................................558
Al
.2.2
Nonlinear Elasticity
................................................560
A
1.2.3
Stress-Strain Behavior by Hyperbola
.....................560
Al.2.4 Parameter Determination for Hyperbolic Model....
560
Al.
2.4.1
Poisson s Ratio
........................................561
A
1.3
Normal Behavior
..................................................................563
A
1.4
Hyperbolic Mode] for Interfaces/Joints
................................563
A
1.4.1
Unloading and Reloading in Hyperbolic Model
.....565
A1.5
Ramberg—Osgood
Model
.....................................................566
A1.6 Variable Moduli Models
.......................................................567
A1.7 Conventional Plasticity
.........................................................567
A
1.7.1 von
Mises................................................................
568
Al.
7.1.1
Compression Test
(σ,, σ2
=
σ,)
...............570
A L7.2 Plane Strain
.............................................................570
A
1.7.3
Mohr-Coulomb Model
...........................................570
A1.8 Continuous Yield Plasticity: Critical State Model
...............571
Al.8.1 Cap Model
...............................................................574
A
1.8.2
Limitations of Critical State and Cap Models
........576
A1.9 Hierarchical Single Surface Plasticity
..................................576
A
1.9.1
Nonassociated Behavior
(Ą-Model)
.......................578
Al.9.2 Parameters
..............................................................578
Al.9.2.1 Elasticity
.................................................578
Al.9.2.2 Plasticity
.................................................578
A
1.9.2.3
Transition Parameter:
η
..........................579
Al.9.2.4 Yield Function
........................................580
Al.9.2.5 Cohesive Intercept
..................................581
Al.9.2.6 Nonassociative Parameter,
к
..................581
Al.
10
Creep Models
.......................................................................581
AMO.!
Yield Function
........... .............................................583
Al.l
1
Disturbed State Concept Models.....
.....................................584
Al
.11.1
DSC Equations....
....................................................586
Al.l
1.2
Disturbance
.............................................................587
Al.l
1.3
DSC Model for Interface or Joint
...........................589
A1.12 Summary
..............................................................................594
Al.
12.1
Parameters for Soils, Rocks, and Interfaces/Joints.
594
References...
__................................................................................595
Appendix
2:
Computer Software or Codes
.......................................................597
A2.
1
Introduction
..........................................................................597
A2.2 List I: Finite Element Software System: DSC Software
......597
A2.3 List
2:
Commercial Codes
....................................................598
Index
......................................................................................................................601
ioil—
structure interaction
is an area of major importance in geotechnical engineering an<
geomechanics. Advanced Geotechnical Engineering: Soil-Structure Interaction
Using Computer and Material Models covers computer and analytical methods
for a number of geotechnical problems. It introduces the main factors important to
the application of computer methods and constitutive models with emphasis on the
behavior of soils, rocks, interfaces, and joints, all of which are vital for reliable and
accurate solutions.
This book presents the finite element (FE)f finite difference (FD), and analytical methods,
and their applications using modern computers. In conjunction with the use of appropriate
constitutive models, they provide realistic solutions to soil-structure problems. A part of
this book is devoted to solving practical problems using hand calculations in addition to
the use of computer methods. The book also introduces commercial computer codes as
well as computer codes developed by the authors.
This text is useful to practitioners, students, teachers, and researchers who have
backgrounds in geotechnical, structural engineering, and basic mechanics courses.
|
any_adam_object | 1 |
author | Desai, Chandrakant S. 1936- Zaman, Musharraf |
author_GND | (DE-588)120456060 |
author_facet | Desai, Chandrakant S. 1936- Zaman, Musharraf |
author_role | aut aut |
author_sort | Desai, Chandrakant S. 1936- |
author_variant | c s d cs csd m z mz |
building | Verbundindex |
bvnumber | BV041195249 |
classification_rvk | RB 10126 TZ 9000 ZI 6100 |
ctrlnum | (OCoLC)867139197 (DE-599)BVBBV041195249 |
discipline | Geologie / Paläontologie Bauingenieurwesen Geographie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02313nam a2200505 c 4500</leader><controlfield tag="001">BV041195249</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20141125 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130731s2014 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781466515604</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-4665-1560-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)867139197</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041195249</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10126</subfield><subfield code="0">(DE-625)142220:12625</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TZ 9000</subfield><subfield code="0">(DE-625)145177:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZI 6100</subfield><subfield code="0">(DE-625)156469:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Desai, Chandrakant S.</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120456060</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced geotechnical engineering</subfield><subfield code="b">soil-structure interaction using computer and material models</subfield><subfield code="c">Chandrakant S. Desai ; Musharraf Zaman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 616 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bodenmechanik</subfield><subfield code="0">(DE-588)4007385-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geomechanik</subfield><subfield code="0">(DE-588)4126903-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grundbau</subfield><subfield code="0">(DE-588)4022320-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geotechnik</subfield><subfield code="0">(DE-588)4156771-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ingenieurgeologie</subfield><subfield code="0">(DE-588)4125674-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ingenieurgeologie</subfield><subfield code="0">(DE-588)4125674-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geotechnik</subfield><subfield code="0">(DE-588)4156771-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geomechanik</subfield><subfield code="0">(DE-588)4126903-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Bodenmechanik</subfield><subfield code="0">(DE-588)4007385-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Grundbau</subfield><subfield code="0">(DE-588)4022320-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Geotechnik</subfield><subfield code="0">(DE-588)4156771-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zaman, Musharraf</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026170244&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026170244&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026170244</subfield></datafield></record></collection> |
id | DE-604.BV041195249 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:41:47Z |
institution | BVB |
isbn | 9781466515604 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026170244 |
oclc_num | 867139197 |
open_access_boolean | |
owner | DE-29 DE-703 |
owner_facet | DE-29 DE-703 |
physical | XXII, 616 S. Ill., graph. Darst. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | CRC Press |
record_format | marc |
spelling | Desai, Chandrakant S. 1936- Verfasser (DE-588)120456060 aut Advanced geotechnical engineering soil-structure interaction using computer and material models Chandrakant S. Desai ; Musharraf Zaman Boca Raton [u.a.] CRC Press 2014 XXII, 616 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Bodenmechanik (DE-588)4007385-3 gnd rswk-swf Geomechanik (DE-588)4126903-2 gnd rswk-swf Grundbau (DE-588)4022320-6 gnd rswk-swf Geotechnik (DE-588)4156771-7 gnd rswk-swf Ingenieurgeologie (DE-588)4125674-8 gnd rswk-swf Ingenieurgeologie (DE-588)4125674-8 s Geotechnik (DE-588)4156771-7 s DE-604 Geomechanik (DE-588)4126903-2 s Bodenmechanik (DE-588)4007385-3 s Grundbau (DE-588)4022320-6 s Zaman, Musharraf Verfasser aut Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026170244&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026170244&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Desai, Chandrakant S. 1936- Zaman, Musharraf Advanced geotechnical engineering soil-structure interaction using computer and material models Bodenmechanik (DE-588)4007385-3 gnd Geomechanik (DE-588)4126903-2 gnd Grundbau (DE-588)4022320-6 gnd Geotechnik (DE-588)4156771-7 gnd Ingenieurgeologie (DE-588)4125674-8 gnd |
subject_GND | (DE-588)4007385-3 (DE-588)4126903-2 (DE-588)4022320-6 (DE-588)4156771-7 (DE-588)4125674-8 |
title | Advanced geotechnical engineering soil-structure interaction using computer and material models |
title_auth | Advanced geotechnical engineering soil-structure interaction using computer and material models |
title_exact_search | Advanced geotechnical engineering soil-structure interaction using computer and material models |
title_full | Advanced geotechnical engineering soil-structure interaction using computer and material models Chandrakant S. Desai ; Musharraf Zaman |
title_fullStr | Advanced geotechnical engineering soil-structure interaction using computer and material models Chandrakant S. Desai ; Musharraf Zaman |
title_full_unstemmed | Advanced geotechnical engineering soil-structure interaction using computer and material models Chandrakant S. Desai ; Musharraf Zaman |
title_short | Advanced geotechnical engineering |
title_sort | advanced geotechnical engineering soil structure interaction using computer and material models |
title_sub | soil-structure interaction using computer and material models |
topic | Bodenmechanik (DE-588)4007385-3 gnd Geomechanik (DE-588)4126903-2 gnd Grundbau (DE-588)4022320-6 gnd Geotechnik (DE-588)4156771-7 gnd Ingenieurgeologie (DE-588)4125674-8 gnd |
topic_facet | Bodenmechanik Geomechanik Grundbau Geotechnik Ingenieurgeologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026170244&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026170244&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT desaichandrakants advancedgeotechnicalengineeringsoilstructureinteractionusingcomputerandmaterialmodels AT zamanmusharraf advancedgeotechnicalengineeringsoilstructureinteractionusingcomputerandmaterialmodels |