On the estimation of multiple random integrals and U-statistics

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Major, Péter (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin [u.a.] Springer 2013
Schriftenreihe:Lecture notes in mathematics 2079
Schlagworte:
Online-Zugang:Volltext
Inhaltsverzeichnis
Abstract
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV041194548
003 DE-604
005 20140415
007 cr|uuu---uuuuu
008 130730s2013 gw d||| o|||| 00||| eng d
020 |a 3642376169  |9 3-642-37616-9 
020 |a 9783642376177  |c eBook  |9 978-3-642-37617-7 
024 7 |a 10.1007/978-3-642-37617-7  |2 doi 
024 3 |a 9783642376160 
028 5 2 |a Best.-Nr.: 86250107 
035 |a (OCoLC)855563276 
035 |a (DE-599)BVBBV041194548 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c XA-DE-BE 
049 |a DE-824  |a DE-91  |a DE-384  |a DE-703  |a DE-19  |a DE-739  |a DE-20  |a DE-634  |a DE-83 
082 0 |a 519.23  |2 22//ger 
084 |a SI 850  |0 (DE-625)143199:  |2 rvk 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a MAT 604f  |2 stub 
084 |a MAT 606f  |2 stub 
084 |a MAT 000  |2 stub 
084 |a 510  |2 sdnb 
100 1 |a Major, Péter  |e Verfasser  |4 aut 
245 1 0 |a On the estimation of multiple random integrals and U-statistics  |c Péter Major 
264 1 |a Berlin [u.a.]  |b Springer  |c 2013 
300 |a 1 Online-Ressource (XIII, 288 S.)  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Lecture notes in mathematics  |v 2079 
650 0 7 |a U-Statistik  |0 (DE-588)4754777-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Stochastisches Integral  |0 (DE-588)4126478-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Stochastisches Integral  |0 (DE-588)4126478-2  |D s 
689 0 1 |a U-Statistik  |0 (DE-588)4754777-7  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe, Paperback  |z 978-3-642-37616-0 
830 0 |a Lecture notes in mathematics  |v 2079  |w (DE-604)BV014303148  |9 2079 
856 4 0 |u https://doi.org/10.1007/978-3-642-37617-7  |x Verlag  |3 Volltext 
856 4 2 |m Springer Fremddatenuebernahme  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026169559&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Springer Fremddatenuebernahme  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026169559&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Abstract 
912 |a ZDB-2-LNM 
912 |a ZDB-2-SMA 
943 1 |a oai:aleph.bib-bvb.de:BVB01-026169559 

Datensatz im Suchindex

DE-BY-TUM_katkey 1947245
DE-BY-UBM_katkey 4797825
_version_ 1823055284925366272
adam_text ON THE ESTIMATION OF MULTIPLE RANDOM INTEGRALS AND U-STATISTICS / MAJOR, PETER : 2013 TABLE OF CONTENTS / INHALTSVERZEICHNIS 1 INTRODUCTION 2 MOTIVATION OF THE INVESTIGATION. DISCUSSION OF SOME PROBLEMS 3 SOME ESTIMATES ABOUT SUMS OF INDEPENDENT RANDOM VARIABLES 4 ON THE SUPREMUM OF A NICE CLASS OF PARTIAL SUMS 5 VAPNIK– CERVONENKIS CLASSES AND L2-DENSE CLASSES OF FUNCTIONS 6 THE PROOF OF THEOREMS 4.1 AND 4.2 ON THE SUPREMUM OF RANDOM SUMS 7 THE COMPLETION OF THE PROOF OF THEOREM 4.1 8 FORMULATION OF THE MAIN RESULTS OF THIS WORK 9 SOME RESULTS ABOUT U-STATISTICS 10 MULTIPLEWIENER–ITO INTEGRALS AND THEIR PROPERTIES 11 THE DIAGRAM FORMULA FOR PRODUCTS OF DEGENERATE U-STATISTICS 12 THE PROOF OF THE DIAGRAM FORMULA FOR U-STATISTICS 13 THE PROOF OF THEOREMS 8.3, 8.5 AND EXAMPLE 8.7 14 REDUCTION OF THE MAIN RESULT IN THIS WORK 15 THE STRATEGY OF THE PROOF FOR THE MAIN RESULT OF THIS WORK 16 A SYMMETRIZATION ARGUMENT 17 THE PROOF OF THE MAIN RESULT 18 AN OVERVIEW OF THE RESULTS AND A DISCUSSION OF THE LITERATURE DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT. ON THE ESTIMATION OF MULTIPLE RANDOM INTEGRALS AND U-STATISTICS / MAJOR, PETER : 2013 ABSTRACT / INHALTSTEXT THIS WORK STARTS WITH THE STUDY OF THOSE LIMIT THEOREMS IN PROBABILITY THEORY FOR WHICH CLASSICAL METHODS DO NOT WORK. IN MANY CASES SOME FORM OF LINEARIZATION CAN HELP TO SOLVE THE PROBLEM, BECAUSE THE LINEARIZED VERSION IS SIMPLER. BUT IN ORDER TO APPLY SUCH A METHOD WE HAVE TO SHOW THAT THE LINEARIZATION CAUSES A NEGLIGIBLE ERROR. THE ESTIMATION OF THIS ERROR LEADS TO SOME IMPORTANT LARGE DEVIATION TYPE PROBLEMS, AND THE MAIN SUBJECT OF THIS WORK IS THEIR INVESTIGATION. WE PROVIDE SHARP ESTIMATES OF THE TAIL DISTRIBUTION OF MULTIPLE INTEGRALS WITH RESPECT TO A NORMALIZED EMPIRICAL MEASURE AND SO-CALLED DEGENERATE U-STATISTICS AND ALSO OF THE SUPREMUM OF APPROPRIATE CLASSES OF SUCH QUANTITIES. THE PROOFS APPLY A NUMBER OF USEFUL TECHNIQUES OF MODERN PROBABILITY THAT ENABLE US TO INVESTIGATE THE NON-LINEAR FUNCTIONALS OF INDEPENDENT RANDOM VARIABLES. THIS LECTURE NOTE YIELDS INSIGHTS INTO THESE METHODS, AND MAY ALSO BE USEFUL FOR THOSE WHO ONLY WANT SOME NEW TOOLS TO HELP THEM PROVE LIMIT THEOREMS WHEN STANDARD METHODS ARE NOT A VIABLE OPTION DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
any_adam_object 1
author Major, Péter
author_facet Major, Péter
author_role aut
author_sort Major, Péter
author_variant p m pm
building Verbundindex
bvnumber BV041194548
classification_rvk SI 850
SK 820
classification_tum MAT 604f
MAT 606f
MAT 000
collection ZDB-2-LNM
ZDB-2-SMA
ctrlnum (OCoLC)855563276
(DE-599)BVBBV041194548
dewey-full 519.23
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.23
dewey-search 519.23
dewey-sort 3519.23
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-642-37617-7
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02374nam a2200553 cb4500</leader><controlfield tag="001">BV041194548</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140415 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130730s2013 gw d||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3642376169</subfield><subfield code="9">3-642-37616-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642376177</subfield><subfield code="c">eBook</subfield><subfield code="9">978-3-642-37617-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-37617-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783642376160</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Best.-Nr.: 86250107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)855563276</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041194548</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.23</subfield><subfield code="2">22//ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 604f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Major, Péter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the estimation of multiple random integrals and U-statistics</subfield><subfield code="c">Péter Major</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 288 S.)</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">2079</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">U-Statistik</subfield><subfield code="0">(DE-588)4754777-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Integral</subfield><subfield code="0">(DE-588)4126478-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastisches Integral</subfield><subfield code="0">(DE-588)4126478-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">U-Statistik</subfield><subfield code="0">(DE-588)4754777-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-3-642-37616-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">2079</subfield><subfield code="w">(DE-604)BV014303148</subfield><subfield code="9">2079</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-37617-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026169559&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026169559&amp;sequence=000003&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-LNM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026169559</subfield></datafield></record></collection>
id DE-604.BV041194548
illustrated Illustrated
indexdate 2025-02-03T17:41:49Z
institution BVB
isbn 3642376169
9783642376177
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-026169559
oclc_num 855563276
open_access_boolean
owner DE-824
DE-91
DE-BY-TUM
DE-384
DE-703
DE-19
DE-BY-UBM
DE-739
DE-20
DE-634
DE-83
owner_facet DE-824
DE-91
DE-BY-TUM
DE-384
DE-703
DE-19
DE-BY-UBM
DE-739
DE-20
DE-634
DE-83
physical 1 Online-Ressource (XIII, 288 S.) graph. Darst.
psigel ZDB-2-LNM
ZDB-2-SMA
publishDate 2013
publishDateSearch 2013
publishDateSort 2013
publisher Springer
record_format marc
series Lecture notes in mathematics
series2 Lecture notes in mathematics
spellingShingle Major, Péter
On the estimation of multiple random integrals and U-statistics
Lecture notes in mathematics
U-Statistik (DE-588)4754777-7 gnd
Stochastisches Integral (DE-588)4126478-2 gnd
subject_GND (DE-588)4754777-7
(DE-588)4126478-2
title On the estimation of multiple random integrals and U-statistics
title_auth On the estimation of multiple random integrals and U-statistics
title_exact_search On the estimation of multiple random integrals and U-statistics
title_full On the estimation of multiple random integrals and U-statistics Péter Major
title_fullStr On the estimation of multiple random integrals and U-statistics Péter Major
title_full_unstemmed On the estimation of multiple random integrals and U-statistics Péter Major
title_short On the estimation of multiple random integrals and U-statistics
title_sort on the estimation of multiple random integrals and u statistics
topic U-Statistik (DE-588)4754777-7 gnd
Stochastisches Integral (DE-588)4126478-2 gnd
topic_facet U-Statistik
Stochastisches Integral
url https://doi.org/10.1007/978-3-642-37617-7
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026169559&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026169559&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV014303148
work_keys_str_mv AT majorpeter ontheestimationofmultiplerandomintegralsandustatistics